
CSE DEPARTMENT, NCERC PAMPADY Page 1

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

COURSE MATERIALS

ECT 206:COMPUTER ARCHITECTURE AND

MICROCONTROLLER

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in

education.

 MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in

Engineering and Frontier Technology and to impart quality education to mould technically competent

citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe

discipline, culture and spiritually, and to mould them in to technological giants, dedicated research

scientists and intellectual leaders of the country who can spread the beams of light and happiness among

the poor and the underprivileged.

CSE DEPARTMENT, NCERC PAMPADY Page 2

ABOUT DEPARTMENT

 Established in: 2002

 Course offered : B.Tech in Electronics and Communication Engineering

M.Tech in VLSI

 Approved by AICTE New Delhi and Accredited by NAAC

 Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Providing Universal Communicative Electronics Engineers with corporate and social relevance towards

sustainable developments through quality education.

DEPARTMENT MISSION

1) Imparting Quality education by providing excellent teaching, learning environment.

2) Transforming and adopting students in this knowledgeable era, where the electronic gadgets

(things) are getting obsolete in short span.

3) To initiate multi-disciplinary activities to students at earliest and apply in their respective fields

of interest later.

4) Promoting leading edge Research & Development through collaboration with academia &

industry.

PROGRAMME EDUCATIONAL OBJECTIVES

PEOI. To prepare students to excel in postgraduate programmes or to succeed in industry / technical

profession through global, rigorous education and prepare the students to practice and innovate recent

fields in the specified program/ industry environment.

PEO2. To provide students with a solid foundation in mathematical, Scientific and engineering

fundamentals required to solve engineering problems and to have strong practical knowledge required to

design and test the system.

PEO3. To train students with good scientific and engineering breadth so as to comprehend, analyze,

design, and create novel products and solutions for the real life problems.

PEO4. To provide student with an academic environment aware of excellence, effective communication

skills, leadership, multidisciplinary approach, written ethical codes and the life-long learning needed for

a successful professional career.

CSE DEPARTMENT, NCERC PAMPADY Page 3

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant

to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give and

receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for Real-

time Problems and to investigate for its future scope.

CSE DEPARTMENT, NCERC PAMPADY Page 4

PSO2: Ability to learn and apply various methodologies for facilitating development of high quality

System Software Tools and Efficient Web Design Models with a focus on performance

optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating hardware/software

products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create

innovative career path and for the socially relevant issues.

COURSE OUTCOMES
ECT 206

SUBJECT CODE: EC 308

COURSE OUTCOMES

ECT 206.1 Ability to understand basics of embedded system and to design an
embedded system product.

ECT 206.2 Ability to understand the different standards and protocols used for
communication with I/O devices.

ECT 206.3 Ability to distinguish different ways of communication with I/O devices.

ECT 206.4 Ability to understand basic programming concepts of Embedded Systems

ECT 206.5 Ability to understand about inter-process communication.

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

CO’S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12
ECT 206.1 3 3
ECT 206.2 3 3
ECT 206.3 3 3
ECT 206.4 3 3 3
ECT 206.5 3 3 3 3

 3 3

CO’S PSO1 PSO2 PSO3
ECT 206.1
ECT 206.2 3
ECT 206.3 3 3 2
ECT 206.4 3 3 2
ECT 206.5
ECT 206 3 3 2

CSE DEPARTMENT, NCERC PAMPADY Page 5

CSE DEPARTMENT, NCERC PAMPADY Page 6

CSE DEPARTMENT, NCERC PAMPADY Page 7

CSE DEPARTMENT, NCERC PAMPADY Page 8

CSE DEPARTMENT, NCERC PAMPADY Page 9

CSE DEPARTMENT, NCERC PAMPADY Page 10

CSE DEPARTMENT, NCERC PAMPADY Page 11

QUESTION BANK

MODULE I

Q:NO:

QUESTIONS

CO

KL

PAGE NO:

1 Explain the functional units of a computer system
with diagram

CO K2 2

2 Draw the general computer architecture explain
shortly.

CO1 K3 4

3 Compare Von Newman and Harward architecture CO1 K3 6

4 Discuss about typical characteristics RISC
architecture

CO1 K2 10

5 Compare RISC & CISC architecture CO1 K3 12

6 Explain the basic function of aprocessor CO1 K2 13

7 Discuss about Advanced RISC MACHINE CO1 K2 11

8 Explain about external signal used in a processor CO1 K2 15

9 Addressing of memory location by the processor

explain with neat diagram

CO1 K2 17

10 Explain different buses used in a processor CO1 K2 18

11 Explain processor operation with appropriate
diagrams

CO1 K2 13

MODULE II

1 List the components of 8051 microcontroller CO2 K3 25

2 Which is more important for functioning of a basic

processor,program counter,stack pointer.Justify

your answer

CO2 K5 41

3 Explain the salient features of 8051

microcontroller

CO2 K2 35

4 Explain 8051 microcontroller with neat diagram CO2 K2 27

5 Discuss detail about program status word register CO2 K2 28

CSE DEPARTMENT, NCERC PAMPADY Page 12

with neat diagram

6 Explain memory organization of 8051

microcontroller

CO2 K2 48

7 Write a short note about stack CO2 K2 51

8 Draw the diagram of IE & IP register explain its
briefly

CO2 K2 53

9 Explain about timer registers CO2 K2 52

10 Explain in detail about interrupts CO2 K2 53

11 Explain about timer mode operation CO2 K2 54

MODULE III

1 Explain about assembler directives CO3 K1 78

2
Write a program to add the values of locations
50H and 51H and store the result in locations
in 52h and 53H.

CO3 K5 79

3
Write a program to store data FFH into RAM
memory locations 50H to 58H using indirect
addressing mode.

CO3 K5 79

4
Write a program to clear 10 RAM locations starting at
RAM address 1000H.

CO3 K5 81

5
Write a program to find the average of five 8
bit numbers. Store the result in H. (Assume
that after adding five 8 bit numbers, the result
is 8 bit only).

CO3 K5 81

6
Write a program to find the cube of an 8 bit
number program is as follows

CO3 K5 82

7
Write a program to count the number of and o's of 8 bit
data stored in location 6000H.

CO3 K5 83

8
Write a program to shift a 24 bit number stored at 57H-
55H to the left logically four places. Assume that the

CO3 K5 83

CSE DEPARTMENT, NCERC PAMPADY Page 13

least significant byte of data is stored in lower address.

9 Explain how to interface seven segment display

with 8051

CO3 K2 83

10 Explain about embedded c CO3 K2 90

MODULE IV

1 Explain TMOD with detailed diagram CO4 K3 127

2 With diagram explain /counter control logic CO4 K2 128

3 Explain timer mode of operation CO4 K2 128

4 Explain the types of serial communication CO4 K2 131

5 Explain about seriel communication modes CO4 K2 132

6 Explain about RS-232 Standards CO4 K2 134

7 Write a program for the 8051 to transfer letter ‘A’ serially

at 4800- baud rate, 8 bit data, 1 stop bit continuously

CO4 K5 135

8 Write a program for the 8051 to transfer the message

‘EARTH’ serially at 9600 baud, 8 bit data, 1 stop bit

continuously.

CO4 K3 136

9 Explain the features of ARM Processors CO4 K2 138

10 Draw the architecture of ARM processor with

explain in detail.

CO4 K2 143

11 Explain about current program status register CO4 K1 144

12 Explain about ARM instruction set CO4 K2 146

MODULE V

1 Explain different types of memory system CO5 K3 151

2 Compare RAM & ROM CO5 K2 154

3 Compare SRAM & DRAM CO5 K3 155

CSE DEPARTMENT, NCERC PAMPADY Page 14

4 Explain about memory hierarchy CO5 K3 156

5 Explain about cache memory CO5 K2 157

6 Explain different levels of memory CO5 K3 162

7 Explain about cache mapping CO5 K3 163

8

Explain about types of cache CO5 K2 163

9 Explain about virtual memory CO5 K2 164

APPENDIX 1

CONTENT BEYOND THE SYLLABUS

S:NO; TOPIC PAGE NO:

1 Embedded system 179

.

.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 1

MODULE 1

COMPUTER ARITHMETIC AND PROCESSOR BASICS

Syllabus:

Algorithms for binary multiplication and division. Fixed and floating-point number

representation. Functional units of a computer, Von Neumann and Harvard computer

architectures, CISC and RISC architectures. Processor Architecture – General internal

architecture, Address bus, Data bus, control bus. Register set – status register, accumulator,

program counter, stack pointer, general purpose registers. Processor operation – instruction

cycle, instruction fetch, instruction decode, instruction execute, timing response, instruction

sequencing and execution (basic concepts, data-path).

1.1 FUNCTIONAL UNITS

A computer consists of five functionally independent main parts: input, memory, arithmetic

and logic, output, and control units, as shown in Figure 1.1.

Fig 1.1 Basic Functional units of a computer

The input unit accepts coded information from human operators using devices such as

keyboards, or from other computers over digital communication lines. The information

received is stored in the computer‟s memory, either for later use or to be processed

immediately by the arithmetic and logic unit. The processing steps are specified by a program

that is also stored in the memory. Finally, the results are sent back to the outside world through

the output unit. All of these actions are coordinated by the control unit. An interconnection

network provides the means for the functional units to exchange information and coordinate

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 2

their actions. The arithmetic and logic circuits, in conjunction with the main control circuits, is

the processor. Input and output equipment is often collectively referred to as the input-output

(I/O) unit. A program is a list of instructions which performs a task. Programs are stored in the

memory. The processor fetches the program instructions from the memory, one after another,

and performs the desired operations. The computer is controlled by the stored program, except

for possible external interruption by an operator or by I/O devices connected to it. Data are

numbers and characters that are used as operands by the instructions. Data are also stored in the

memory. The instructions and data handled by a computer must be encoded in a suitable

format. Each instruction, number, or character is encoded as a string of binary digits called bits,

each having one of two possible values, 0 or 1, represented by the two stable states.

Input Unit:

 Computers accept coded information through input units. The most common input device is

the keyboard. Whenever a key is pressed, the corresponding letter or digit is automatically

translated into its corresponding binary code and transmitted to the processor. Many other

kinds of input devices for human-computer interaction are available, including the touchpad,

mouse, joystick, and trackball. These are often used as graphic input devices in conjunction

with displays. Microphones can be used to capture audio input which is then sampled and

converted into digital codes for storage and processing. Similarly, cameras can be used to

capture video input. Digital communication facilities, such as the Internet, can also provide

input to a computer from other computers and database servers. Memory Unit The function of

the memory unit is to store programs and data. There are two classes of storage, called primary

and secondary. Primary Memory Primary memory, also called main memory, is a fast

memory that operates at electronic speeds. Programs must be stored in this memory while they

are being executed. The memory consists of a large number of semiconductor storage cells,

each capable of storing one bit of information. These cells are rarely read or written

individually. Instead, they are handled in groups of fixed size called words. The memory is

organized so that one word can be stored or retrieved in one basic operation. The number of

bits in each word is referred to as the word length of the computer, typically 16, 32, or 64 bits.

To provide easy access to any word in the memory, a distinct address is associated with each

word location. Addresses are consecutive numbers, starting from 0, that identify successive

locations. Instructions and data can be written into or read from the memory under the control

of the processor. A memory in which any location can be accessed in a short and fixed amount

of time after specifying its address is called a random-access memory (RAM). The time

required to access one word is called the memory access time. This time is independent of the

location of the word being accessed. It typically ranges from a few nanoseconds (ns) to about

100 ns for current RAM units Cache Memory As an adjunct to the main memory, a smaller,

faster RAM unit, called a cache, is used to hold sections of a program that are currently being

executed, along with any associated data. The cache is tightly coupled with the processor and is

usually contained on the same integrated-circuit chip. The purpose of the cache is to facilitate

high instruction execution rates. At the start of program execution, the cache is empty. As

execution proceeds, instructions are fetched into the processor chip, and a copy of each is

placed in the cache. When the execution of an instruction requires data, located in the main

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 3

memory, the data are fetched and copies are also placed in the cache. If these instructions are

available in the cache, they can be fetched quickly during the period of repeated use.

Secondary Storage Although primary memory is essential, it tends to be expensive and does

not retain information when power is turned off. Thus additional, less expensive, permanent

secondarystorage is used when large amounts of data and many programs have to be stored,

particularly for information that is accessed infrequently. Access times for secondary storage

are longer than for primary memory. The devices available are including magnetic disks,

optical disks (DVD and CD), and flash memory devices.

Arithmetic and Logic Unit Most computer operations are executed in the arithmetic and logic

unit (ALU) of the processor. Any arithmetic or logic operation, such as addition, subtraction,

multiplication division, or comparison of numbers, is initiated by bringing the required

operands into the processor, where the operation is performed by the ALU. When operands are

brought into the processor, they are stored in high-speed storage elements called registers. Each

register can store one word of data. Access times to registers are even shorter than access times

to the cache unit on the processor chip. Output Unit Output unit function is to send processed

results to the outside world. A familiar example of such a device is a printer. Most printers

employ either photocopying techniques, as in laser printers, or ink jet streams. Such printers

may generate output at speeds of 20 or more pages per minute. However, printers are

mechanical devices, and as such are quite slow compared to the electronic speed of a processor.

Some units, such as graphic displays, provide both an output function, showing text and

graphics, and an input function, through touchscreen capability. The dual role of such units is

the reason for using the single name input/output (I/O) unit in many cases. Control Unit The

memory, arithmetic and logic, and I/O units store and process information and perform input

and output operations. The operation of these units must be coordinated in some way. This is

the responsibility of the control unit. The control unit is effectively the nerve center that sends

control signals to other units and senses their states. I/O transfers, consisting of input and

output operations, are controlled by program instructions that identify the devices involved and

the information to be transferred. Control circuits are responsible for generating the timing

signals that govern the transfers. They determine when a given action is to take place. Data

transfers between the processor and the memory are also managed by the control unit through

timing signals. A large set of control lines (wires) carries the signals used for timing and

synchronization of events in all units. The operation of a computer can be summarized as

follows: • The computer accepts information in the form of programs and data through an input

unit and stores it in the memory. • Information stored in the memory is fetched under program

control into an arithmetic and logic unit, where it is processed. • Processed information leaves

the computer through an output unit. • All activities in the computer are directed by the control

unit. Von Neumann architecture In the 1940s, a mathematician called John Von Neumann

described the basic arrangement (or architecture) of a computer. Most computers today follow

the concept that he described although there are other types of architecture. A Von Neumann-

based computer is a computer that: Uses a single processor. Uses one memory for both

instructions and data. A von Neumann computer cannot distinguish between data and

instructions in a memory location! It „knows‟ only because of the location of a particular bit

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 4

pattern in RAM. Executes programs by doing one instruction after the next in a serial manner

using a fetch-decode-execute cycle.

1.2 COMPUTER ARCHITECTURE

Computer Architecture refers to the internal design of a computer with its CPU, which

includes:

 Arithmetic and logic unit,

 Control unit,

 Registers,

 Memory for data and instructions,

 Input/output interface and

 External storage functions.

Fig 1.2 : General Architecture

VON-NEUMANN ARCHITECTURE:

The same memory and bus are used to store both Data and Instructions.

The main drawback:

CPU is unable to access program memory and data memory simultaneously. This case is called

the "bottleneck" that affects system performance.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 5

Fig 1.3: Von-Neumann architecture

The bottleneck

 If a Von-Neumann machine wants to perform an instruction (already fetched from the

memory) on some data in memory, it has to move the data across the bus into the CPU.

 When the computation is done, it needs to move outputs of the computation to memory

across the same bus; this operation will be completed if the bus is not used by another

operation to fetch another instruction or data from the shared memory; otherwise the

outputs of the computation has to wait.

HARVARD ARCHITECTURE:

The Harvard architecture stores machine instructions and data in separate memory units using

different buses.

The main advantage:

 Computers designed with the Harvard architecture are able to run a program and access

data independently, and therefore simultaneously.

Harvard architecture is more complicated but separate pipelines remove the bottleneck that

Von-Neumann creates.

MODIFIED HARVARD ARCHITECTURE

The majority of modern computers have no physical separation between the memory spaces

used by both data and instructions, therefore could be described technically as Von-Neumann.

But as they have two separate address spaces, different buses and special instructions that keep

data from being mistaken for code, this architecture is called "Modified Harvard Architecture".

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 6

Fig 1.4: Harvard Architecture

Ex. some initial data values or constants can be accessed by the running program directly from

instruction memory without taking up space in data memory.

1.3 RISC AND CISC ARCHITECTURES

General

The dominant architecture in the PC market belongs to the Complex Instruction Set Computer

(CISC) design. The obvious reason for this classification is the “complex” nature of its

Instruction Set Architecture (ISA). The motivation for designing such complex instruction sets

is to provide an instruction set that closely supports the operations and data structures used by

Higher-Level Languages (HLLs). However, the side effects of this design effort are far too

serious to ignore.

Addressing Modes in CISC

The decision of CISC processor designers to provide a variety of addressing modes leads to

variable-length instructions. For example, instruction length increases if an operand is in

memory as opposed to in a register.

 This is because we have to specify the memory address as part of instruction encoding,

which takes many more bits.

 This complicates instruction decoding and scheduling. The side effect of providing a

wide range of instruction types is that the number of clocks required to execute

instructions varies widely.

 This again leads to problems in instruction scheduling and pipelining.

Evolution of RISC

For these and other reasons, in the early 1980s designers started looking at simple ISAs.

Because these ISAs tend to produce instruction sets with far fewer instructions, they coined the

term Reduced Instruction Set Computer (RISC). Even though the main goal was not to reduce

the number of instructions, but the complexity, the term has stuck.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 7

There is no precise definition of what constitutes a RISC design. However, we can identify

certain characteristics that are present in most RISC systems.

 We identify these RISC design principles after looking at why the designers took the

route of CISC in the first place.

 Because CISC and RISC have their advantages and disadvantages, modern processors

take features from both classes. For example, the PowerPC, which follows the RISC

philosophy, has quite a few complex instructions.

Fig 1.5: Typical RISC Architecture based Machine - Instruction phase overlapping

Definition of RISC

RISC, or Reduced Instruction Set Computer is a type of microprocessor architecture that

utilizes a small, highly-optimized set of instructions, rather than a more specialized set of

instructions often found in other types of architectures.

Evolution/History.

The first RISC projects came from IBM, Stanford, and UC-Berkeley in the late 70s and early

80s. The IBM 801, Stanford MIPS, and Berkeley RISC 1 and 2 were all designed with a

similar philosophy which has become known as RISC. Certain design features have been

characteristic of most RISC processors

 One Cycle Execution Time. RISC processors have a CPI (clock per instruction) of one

cycle. This is due to the optimization of each instruction on the CPU and a technique

called ;

 Pipelining. A technique that allows for simultaneous execution of parts, or stages, of

instructions to more efficiently process instructions;

 Large Number of Registers. The RISC design philosophy generally incorporates a

larger number of registers to prevent in large amounts of interactions with memory

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 8

Fig 1.6 Advanced RISC Machine (ARM)

Non RISC Design or Pre RISC Design

 In the early days of the computer industry, programming was done in assembly language or

machine code, which encouraged powerful and easy to use instructions. CPU designers

therefore tried to make instructions that would do as much work as possible. With the advent of

higher level languages, computer architects also started to create dedicated instructions to

directly implement certain central mechanisms of such languages.

Fig 1.7: Typical CISC Architecture – Stack Design

Another general goal was to provide every possible addressing mode for every instruction,

known as orthogonality, to ease compiler implementation. Arithmetic operations could

therefore often have results as well as operands directly in memory (in addition to register or

immediate).

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 9

The attitude at the time was that hardware design was more mature than compiler design so this

was in itself also a reason to implement parts of the functionality in hardware and/or microcode

rather than in a memory constrained compiler (or its generated code) alone. This design

philosophy became retroactively termed Complex Instruction Set Computer (CISC) after the

RISC philosophy came onto the scene.

An important force encouraging complexity was very limited main memories (on the order of

kilobytes). It was therefore advantageous for the density of information held in computer

programs to be high, leading to features such as highly encoded, variable length instructions,

doing data loading as well as. These issues were of higher priority than the ease of decoding

such instructions.

An equally important reason was that main memories were quite slow (a common type was

ferrite core memory); by using dense information packing, one could reduce the frequency with

which the CPU had to access this slow resource. Modern computers face similar limiting

factors: main memories are slow compared to the CPU and the fast cache memories employed

to overcome this are instead limited in size. This may partly explain why highly encoded

instruction sets have proven to be as useful as RISC designs in modern computers.

TYPICAL CHARACTERISTICS OF RISC ARCHITECTURE

Designers make choices based on the available technology. As the technology, both hardware

and software, evolves, design choices also evolve. Furthermore, as we get more experience in

designing processors, we can design better systems. The RISC proposal was a response to the

changing technology and the accumulation of knowledge from the CISC designs. CISC

processors were designed to simplify compilers and to improve performance under constraints

such as small and slow memories. The important observations that motivated designers to

consider alternatives to CISC designs were

 Simple Instructions. The designers of CISC architectures anticipated extensive use of

complex instructions because they close the semantic gap. In reality, it turns out that

compilers mostly ignore these instructions. Several empirical studies have shown that

this is the case. One reason for this is that different high-level languages use different

semantics. For example, the semantics of the C for loop is not exactly the same as that

in other languages. Thus, compilers tend to synthesize the code using simpler

instructions.

 Few Data Types. CISC ISA tends to support a variety of data structures, from simple

data types such as integers and characters to complex data structures such as records

and structures. Empirical data suggest that complex data structures are used relatively

infrequently. Thus, it is beneficial to design a system that supports a few simple data

types efficiently and from which the missing complex data types can be synthesized.

 Simple Addressing Modes. CISC designs provide a large number of addressing

modes. The main motivations are

(1) To support complex data structures and

(2) To provide flexibility to access operands.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 10

(a) Problems Caused. Although this allows flexibility, it also introduces problems. First, it

causes variable instruction execution times, depending on the location of the operands.

(b) Second, it leads to variable-length instructions. For example, the IA-32 instruction length

can range from 1 to 12 bytes. Variable instruction lengths lead to inefficient instruction

decoding and scheduling.

 Identical General Purpose Registers. Allowing any register to be used in any context,

simplifying compiler design (although normally there are separate floating point

registers).

 Harvard Architecture Based. RISC designs are also more likely to feature a Harvard

memory model, where the instruction stream and the data stream are conceptually

separated; this means that modifying the memory where code is held might not have

any effect on the instructions executed by the processor (because the CPU has a

separate instruction and data cache), at least until a special synchronization instruction

is issued. On the upside, this allows both caches to be accessed simultaneously, which

can often improve performance.

RISC VS CISC – AN EXAMPLE

The simplest way to examine the advantages and disadvantages of RISC architecture is by

contrasting it with its predecessor, CISC (Complex Instruction Set Computers) architecture.

Multiplying Two Numbers in Memory.

The main memory is divided into locations numbered from (row) 1: (column) 1 to (row) 6:

(column) 4. The execution unit is responsible for carrying out all computations. However, the

execution unit can only operate on data that has been loaded into one of the six registers (A, B,

C, D, E, or F). Let's say we want to find the product of two numbers - one stored in location 2:3

and another stored in location 5:2 - and then store the product back in the location 2:3

Fig 1.8: : Representation of Storage Scheme for a Generic Computer

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 11

The CISC Approach. The primary goal of CISC architecture is to complete a task in as few

lines of assembly as possible. This is achieved by building processor hardware that is capable

of understanding and executing a series of operations. For this particular task, a CISC

processor would come prepared with a specific instruction (say "MUL").

 When executed, this instruction loads the two values into separate registers, multiplies

the operands in the execution unit, and then stores the product in the appropriate

register.

 Thus, the entire task of multiplying two numbers can be completed with one

instruction:

MUL 2:3, 5:2

 MUL is what is known as a "complex instruction."

 It operates directly on the computer's memory banks and does not require the

programmer to explicitly call any loading or storing functions.

 It closely resembles a command in a higher level language. For instance, if we let "a"

represent the value of 2:3 and "b" represent the value of 5:2, then this command is

identical to the C statement "a = a x b."

Advantage.

One of the primary advantages of this system is that the compiler has to do very little work to

translate a high-level language statement into assembly. Because the length of the code is

relatively short, very little RAM is required to store instructions. The emphasis is put on

building complex instructions directly into the hardware.

The RISC Approach. RISC processors only use simple instructions that can be executed

within one clock cycle. Thus, the "MUL" command described above could be divided into

three separate commands:

 "LOAD," which moves data from the memory bank to a register,

 "PROD," which finds the product of two operands located within the registers, and

 "STORE," which moves data from a register to the memory banks.

In order to perform the exact series of steps described in the CISC approach, a programmer

would need to code four lines of assembly:

LOAD A, 2:3

LOAD B, 5:2

PROD A, B

STORE 2:3, A

Analysis. At first, this may seem like a much less efficient way of completing the operation.

Because there are more lines of code, more RAM is needed to store the assembly level

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 12

instructions. The compiler must also perform more work to convert a high-level language

statement into code of this form.

 Advantage of RISC. However, the RISC strategy also brings some very important

advantages. Because each instruction requires only one clock cycle to execute, the

entire program will execute in approximately the same amount of time as the multi-

cycle "MUL" command. These RISC "reduced instructions" require less transistors of

hardware space than the complex instructions, leaving more room for general purpose

registers. Because all of the instructions execute in a uniform amount of time (i.e. one

clock), pipelining is possible.

a) Separating the "LOAD" and "STORE" instructions actually reduces the amount of work

that the computer must perform.

b) After a CISC-style "MUL" command is executed, the processor automatically erases

the registers. If one of the operands needs to be used for another computation, the

processor must re-load the data from the memory bank into a register. In RISC, the

operand will remain in the register until another value is loaded in its place.

The following table will differentiate both the architectures and based on the analysis the

overall advantage will be discussed.

Table Comparison of CISC and RISC Architectures

 CISC Approach. The CISC approach attempts to minimize the number of instructions

per program, sacrificing the number of cycles per instruction.

 RISC Approach. RISC does the opposite, reducing the cycles per instruction at the cost

of the number of instructions per program.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 13

1.4 PROCESSOR ARCHITECTURE

GENERAL INTERNAL ARCHITECTURE

The general internal architecture of any processor is shown in Figure. Apart from the arithmetic

logic unit (ALU), which performs all arithmetic and logical operations, every processor offers a

set of general purpose registers for various storage and operations. Its status register

accommodates the status of different arithmetic and logical operations, which might be

necessary for conditional branching. Its program counter holds the address of next instruction

word to be fetched from external memory. The stack pointer indicates the address of the stack-

top.

Fig 1.9 : General Internal Architecture of a processor

Two more architectural features of any processor are indicated in Figure. They are control unit

and, oscillator and timing module. The control unit is responsible for generating all control

signals and general working of the processor. This is achieved by the instructions with the help

of internal clock, which is maintained by the oscillator unit.

BASIC FUNCTION

These architectural details of a processor are meant for executing a software. We should always

remember that hardware and software must be dealt concurrently for any computer or any

processor. Only hardware or only software would not be able to achieve any tangible outcome.

The basic duty of any processor is to fetch, decode and execute instructions as long as it is

powered on. Unless it is a microcontroller, these instructions are available outside the physical

boundary of the processor, within memory chips (ICs). These memory chips are electrically

connected with the processor through a bunch of wires, designated as the bus.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 14

Fig 1.10: Basic Function of any Processor

Apart from fetching the opcode of executable instructions, sometimes it might be necessary for

the processor to load or store operands in the external memory, if indicated so by the ongoing

instruction Generally, the operation of a processor is sequential, which is diverted to another

sequence due to conditional branching, subroutine calls and returning from subroutines, or to

respond against any eventual external interrupt signal.

PERIPHERAL DEVICES AND EXTERNAL COMMUNICATION

Memory devices are not the only category of peripheral devices necessary for a processor to be

functional. Later in this chapter, we shall see that a large number of peripheral devices are used

to support different duties, as per the system requirements. These devices (non-memory

devices) are, generally, referred as Input/output devices or I/O devices. Note that, just like

memory devices, these I/O devices are also connected (or interfaced) with the processor

through the bus.

Every processor offers three major types of bus.

 Address bus

 Data bus

 Control bus.

Out of these three bus, data bus is bi-directional, as data must come in and also go out of the

processor, depending upon the specific requirements. Address bus is always unidirectional and

it carries address signals from the processor to all external devices around it, memory and I/O.

Most of the control signals also move out of the processor. Schematically, a generic

processor’s external signals are presented in Figure.

Decode Instruction Fetch Instruction Execute Instruction

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 15

Fig 1.11; External signals of a generic processor

ADDRESS BUS AND ADDRESSING

The width of address bus or number of address lines available from any processor indicates its

maximum memory size handling capability. The number of memory locations (bytes or words

as the case might be) addressable by n address lines is 2
n
. Therefore, if the processor offers 16

address lines then it can address 2
16

or 64K locations (1 K = 2
10

 = 1,024). If it is offering 20

address lines then it can address 2
20

 or 1M locations and so on.

We have already discussed how the address bus helps in locating any desired data with any

memory or I/O device. These address signals are decoded by a decoder inside the memory or

I/O device to target the desired location.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 16

Fig 1.12 : Addressing of memory location by the processor

DATA BUS AND DATA FLOW CONTROL

The width of data bus of any processor indicates its simultaneous handling capability of the

maximum number of bits. Generally, a processor is designated by its data bus width. For

example, an 8-bit processor is capable of communicating 8-bit of data at the same time or

having an 8-bit data bus. Similarly, a 16-bit processor has 16 parallel data lines for data

communications.

The flow of data is bi-directional, depending upon whether the processor is interested in

reading from or writing into the device (memory or I/O). This intension of the processor is

expressed through its control signals (read and write). Depending upon this indication (read or

write), the device (memory or I/O) enables the appropriate 3-state buffer to allow the flow of

data signals from the data location already selected by address signals. The identical type of 3-

state buffers is also present at the processor end in its data bus. This is illustrated through

Figure, using 1-byte (8-bits) of storage area. Note that D0-D7 represents the data bus,

interfaced with the processor. Eight flip-flops are for storage of data (8-bits) and at the input

and output of each flip-flop, tri-state buffers are provided, whose control inputs are connected

in parallel. The location-select signal from the decoder within the memory IC along with

memory read or memory write signal enable these buffers. The clock signal acts in conjunction

with memory write and select signals for the storage operation.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 17

Fig 1.13 : Data flow mechanism between memory & processor

In Figure , the reader should note that although separate lines indicate input-to and output-from

the tri-state buffers, the designation for any pair of buffers is the same, i.e., either both are DO

or both are D1. Externally, these data line pairs are connected together to form a bus of 8 data

lines, i.e., DO-D7.

CONTROL BUS

Number and functions of control signals, constituting the control bus varies widely with the

processor itself. However, two of its important signals are READ and WRITE. Condition of

these control signals indicate whether the present operation, intended by the processor is

expecting the data in (READ) or sending the data out (WRITE). As the processor is to interact

with two types of devices, memory and I/O, in general, four read/write signals are offered, as

shown in Figure 1.11 . A few status signals are also available from the processor, apart from

power input signals. Two more input signals are essential for all processors, namely clock and

reset. Apart from these, a few external interrupt input signals are also provided in all

processors.

The purpose of all these signals is to execute any program. The programs are composed of

individual instructions. We shall now discuss how this program execution is implemented by

the processor during its operational stage.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 18

1.5 PROCESSOR OPERATION

The job of the processor is to execute programs, which are composed of multiple instructions.

At this point, we should remember that instructions executable by the processor, are always in

the machine code. Programs developed with high level language (HLL) instructions are first

changed to this machine code, understandable by the processor. In general, the machine code

instructions are extremely primitive and simple, e.g.,

 Copy a data byte from external memory to internal register or vice versa.

 Add two numbers available within the processor registers.

 If the result of subtraction is zero, then skip next three (or three thousand three hundred

thirty three) instructions.

These instructions must be present in binary form within the memory of the system.

INSTRUCTION CYCLE

Fig 1.14 : Flow chart for simplified instruction cycle

To execute any type of instruction including those that are cited above, the processor should

perform the following steps

 Fetch

 Decode

Instructi

on Fetch

Instructi

on

Operand

fetch

Instructi

on

Store

result

Fetch

Operand
Y

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 19

 Execute

Combination of these three steps is known as Instruction cycle. A flow chart of simplified form

of instruction cycle of a generic processor is shown in figure

It may be observed from the flowchart that after fetching the instruction in the form of its

opcode and decoding it, the processor checks for any eventual operand fetch, which might be

necessary for some (not for all) instructions. If found necessary, then the operand is fetched

from memory and then the instruction is executed. Finally, the result of the instruction is stored

and the whole cycle is repeated. At this point, the reader may ask a question why this is

designated as a simplified instruction cycle ? The answer is, we are avoiding many other details

related with the instruction cycle, e.g., checking for any interrupt signal or looking for any

direct memory access (DMA) request and so on. At a later stage, we shall consider all these

details of the instruction cycle. We shall now discuss about the details of these three stages and

some more related aspects.

 INSTRUCTION FETCH

The first step, as indicated before, is to fetch the instruction byte(s) from external memory.

This external memory is a vast area containing many bytes of instructions. Therefore, the

processor must pin-point the correct location of this large memory area to extract the target

byte.

It was already indicated that every memory location (byte in majority of cases) has a unique

binary address. After receiving this address, the duty of the memory device is to decode the

address to locate the target byte and place it on the data bus, so that the content of that address

is available for the processor

Fig 1.15 : Timing diagram for Instruction Fetch

Therefore, for the purpose of instruction fetch, the processor places an address, composed of

multiple bits of binary information, on the address bus. Simultaneously, the processor also

sends a memory read signal through its control bus. When these signals reach the memory

device, the data are sent to the processor automat: by the memory device. Schematically, this

transaction is depicted in Figure, which is known as timing diagram. Observe from Figure that

data must be valid (stable) when the memory read signal goes from low to high. Address

signals, generated by the processor, are stable at this stage to ensure a valid data transact

One question may arise here that how, out of so many devices interfaced with address, data and

control bus, the correct device would pay attention to the processor's demand and that the other

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 20

devices would remain silent? The answer is, every device has a chip select input (generally,

designated as CE or CS) and if this input 1s not activated, the device does not react with the

system bus communications, Using a part of the address lines and a suitable decoder (we have

studied this in Chapter 3), the processor activates only one device during any communication

and that solves the problem. This technique is known as address decoding and device selection.

A processor is assisted with a memory decoder and an VO decoder to target the correct device,

which is of current interest.

 INSTRUCTION DECODE

After receiving the instruction code byte within itself, the processor becomes busy in

understanding it (what to do?). This part is known as instruction decode, carried out within the

processor itself. After the completion of instruction decoding, the processor knows whether to

fetch operands from external memory or to increment a register by one or to store a register

content in external memory location.

This instruction decoding may be implemented through hardware. Instruction decoding may

also be implemented through software, known as micro-programming. This demands a

miniature processor within the processor itself, completely devoted for instruction decoding

and its execution.

INSTRUCTION EXECUTE

This is the last and final phase of an instruction’s execution. Depending upon the instruction,

one or Several operations are implemented by the processor. Once this part is complete, the

processor looks forward for the next instruction fetch-decode-execute, and the process

continues.

1.6 MACHINE CYCLE AND T-STATES

An instruction cycle has one or more machine cycles and every machine cycle is

composed of several T-States. These points need some elaboration. A machine cycle is the

step or time-slice during which 1-byte (or one word) of data are transacted between the

processor and some external device. Generally, this external device is the memory device.

However, in exceptional cases it might be an I/O device also. To transact 1-byte of

information,

information, one machine cycle must be executed by the processor. In Figure 1.15 , we

have illustrated such a machine cycle. Note, that instead of reading, it might be a writing

operation also. Each machine cycle is composed of several T-states. One complete

oscillation of the processor clock is designated as one T-state. Depending upon the

processor, the number of T-states necessary to complete one machine cycle must be

known. For example, Intel 8085 processor needs four to six T-states to complete one

machine cycle. The correlation of T-states, machine cycle and instruction cycle is shown

in Figure 1.16 . Figure

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 21

 Fig 1.16 Example of instruction cycle, machine cycle and T-state correlation

For the sake of example, execution of an instruction increment a memory location by one

is illustrated through Figure 1.16. It is assumed that it is a 1-byte instruction, which is

fetched by the first machine cycle. As the data, to be incremented by one, are available in

external memory location, the next machine cycle reads this operand from memory

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 22

 (brings the data byte within the processor). The data are then incremented by one by the

processor and are stored back in the same memory location in the third machine cycle.

Two questions may arise after this explanation of Figure 1.16, as follows

When the instruction was decoded?

When the data were incremented by one?

To answer the first question, it must be pointed out that the instruction must be decoded

before the beginning of the second machine cycle, as the processor must know by that

time what to do. As a rule, instruction decoding is carried out immediately after receiving

the instruction byte within the processor. In other words, for every case, instruction

decoding is done at the end of the first machine cycle. Does it not demand any extra time?

Well it depends. If it is a hardware-based decoding, then it does not need any extra time.

However, in case of micro-programming, it would consume one or two extra T-states. For

example, Intel 8085 spends four T-states for fetching the first instruction byte during its

first machine cycle, while for subsequent machine cycles it spends only three T-states. As

a matter of fact, in its first machine cycle first three T-states are sufficient for fetching the

first byte of instruction. Next T-state of the first machine cycle is devoted for instruction

decoding. As the answer of the second question, we can say that the data would be

incremented either at the end of second machine cycle or at the beginning beginning of

the third machine cycle, depending upon the processor. Here also, the adopted technique

plays an important role.

1.7 TIMINGS, CONTROL AND RESPONSE

Through the above discussions, it must be clear to the reader that timing and control play very

important roles in smooth and efficient functioning of any processor. To further explain this

concept, we may take up the example of interrupt. Although we shall have a detailed discussions

on interrupt, it may be introduced here as an external asynchronous signal, which forces the

processor to carry out something special for it by branching to a pre-defined address and, thus,

executing a special program segment, known as interrupt service routine (ISR). As this is an

asynchronous signal, it may be activated at any time during the execution of any instruction by

the processor. However, the processor cannot leave an instruction's execution half-way to start

doing something else for the sake of such an interrupting signal. To solve this problem, processors

reserve a particular time-slot for checking the existence of any interrupt input signal during the

execution of each and every instruction. For example, Intel 8085 processor had reserved the

penultimate T-state of the last machine cycle of any instruction for this interrupt signal checking.

If it is present, then the next instruction would not be executed immediately and the processor

would start executing from the interrupt's ISR. However, the modified flowchart of the instruction

cycle is presented in Figure 1.17, where the previously explained portion is shaded.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 23

Fig 1.17: Modified Flow chart for simplified instruction cycle

1.8 REGISTER SET

To perform internal operations, all processors offer some internal registers, which can

store temporary information or some operands. Similar to read/write memory, these

registers are nothing but a combination of several flip-flops. Most of these registers are

user (programmer) accessible and a few are not. The number of user accessible registers

varies from processor to processor. Those processors that are memory oriented (e.g.,

Motorola 6800) offers lesser number of internal registers as it expects the data or

operands would mainly be stored and manipulated within the read/write memory (RAM)

of the system. On the other hand, some processors are register oriented (e.g., Zilog Z80),

which offers a larger number of internal registers for the user. It may be noted that the

program execution time for a processor would be less if the data are available within

itself rather than looking outside for them. However, more internal registers means more

complexity in instruction decoding as each register would demand a separate instruction

to be provided by the instruction set of the processor. So far, we have been discussing

about the general purpose registers. However, other types of registers are also available

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 24

within the processors. They are accumulator or result register, status register, stack

pointer, program

counter, interrupt register and so on. Most of these registers, in most processors, would

be user accessible. Apart from these, there are some registers that are purely for

processor's own use, e.g., temporary registers. We shall now have a brief discussion about

some of these special purpose registers.

STATUS REGISTER

Every processor performs some arithmetic or logical operations generating some results.

Depending upon whether the result is zero or negative or produced a carry or odd/even

parity, some additional actions might have to be taken by the programmer. Status register

solves this problem by offering the result status of the last performed arithmetic or

logical operation through its pre-assigned bits. Generally, each bit of this status register is

assigned for one particular indication, e.g., carry, parity, zero, overflow and so on. These

bits act as flags and their conditions (true or false) help the program to decide further

course of actions and dictate the conditional program branching.

ACCUMULATOR

In earlier processors, result of all arithmetic or logical operations were made available

only in the accumulator. In more recent register-to-register architecture, all relevant

registers available within the processor may contain the result of similar operations.

PROGRAM COUNTER

This is one of the most important registers within any processor as it is responsible for

holding the address of the memory location for next instruction byte/word to be fetched

by the processor. After fetching every instruction byte, this is automatically incremented

by one to point to the next byte. The only exception for this auto-increment of the

program counter is in the case of program branching, when it is reloaded by a new value.

This counter is always initialized during system reset so that the first executable

instruction byte is fetched from a pre-defined location of the memory.

STACK POINTER

System stack is a RAM area, which is earmarked by the programmer to accommodate

important information, e.g., return address or register values, in last-in-first-out (LIFO)

sequence. Stack pointer always points to the top of the stack area.

GENERAL PURPOSE REGISTERS

These registers are available within the processor for temporary data storage and

manipulation. For arithmetic or logical operations, one of the two operands must be

within these registers (the other one should be in the accumulator). As already indicated,

number of these registers vary, depending upon the processor.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 25

STACK ORGANIZATION

Stack is an area within the system RAM earmarked for some special storage by the

program or programmer. In other words, the stack consists of several bytes of read–write

memory where some special data may be stored in and restored from, as per the

program's requirements. Why this cannot be accomplished by using the available

registers within the processor? This is because, the number of registers is very limited

and they have their other specific purpose rather than storing return addresses. Stack is,

generally, used to store some important address and data sets. The particular location

within the stack, where the next such information to be stored, is known as the stack-top.

Generally, the address of this stack-top is available in the register designated for this

specific purpose and known as Stack Pointer. Figure 1.18(a) illustrates a sample stack

area within the address space between FFF0H and FFFFH (16-bytes) and the stack

pointer. It is assumed that some stack locations are already occupied (used for storage)

and the stack pointer has the address of the next free location of stack, i.e., FFF9H.

Fig 1.18 Stack and its operation

If any new data to be stored within the stack are included, it must be stored in the address

pointed by the stack pointer, i.e., FFF9H, and in that case the stack pointer would show

the next available free location for storage, i.e., FFF8H, as shown in Figure 1.18(b). Stack

follows the last-in-first-out (LIFO) data movement technique. In other words, the data

that is placed last on the stack-top must be retrieved first.

STACK AS STORAGE AREA

In general, every processor offers two instructions to handle the stack directly. These two

instructions are PUSH and POP. PUSH instruction places the data on the stack-top and

POP instruction takes it out from the stack-top. These data might be originally available

within a general purpose register or some other data. It is already mentioned that the

register within the processor, which holds the current stack-top address, is designated as

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 26

stack pointer (SP). Whenever any data are placed on the stack-top or taken out from it, SP

is also automatically changed by the processor itself. Here, we use the term ‘changed’ as,

for some processors, a PUSH operation increments the SP while for other processors the

SP is decremented for a PUSH instruction.

SUBROUTINES AND STACK

Stacks are widely used for subroutine calls. In these cases, the return address from the

subroutine is placed on the stack-top before branching to the subroutine. As subroutines

are always terminated by a RETURN instruction, once the execution of

the subroutine is complete, this RETURN instruction forces the processor to load the

program counter from the stack-top, producing an effect of returning to the original part

of the program that was left to branch to the subroutine. As an example case of flow of

program control during execution of subroutine call and return instructions, a portion of

a program is shown in Figure 1.19, which includes a call to one of its subroutines (Get

Average). When this Call Get Average instruction is executed, the processor stores the

address of the next instruction (18F3H) on stack-top and loads the program counter by

the address of the subroutine 224BH. The reader may ask how does the processor know

about the address of the subroutine? Well, the address of the subroutine is included

within the call instruction itself. The control is then transferred automatically to the

subroutine, which terminates with a Return instruction. During the execution of this

Return instruction, the processor always reloads the program counter from stack-top

and, in this case, it loads the program counter by the value 18F3H, which it had saved

over the stack. Therefore, the control is now automatically transferred to the next

instruction after the call instruction, and the execution proceeds sequentially thereafter.

Stack is also essential for service interrupts, which we are about to discuss now.

Fig 1.19: Functioning of stack during subroutine call and return

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 27

1.20 ALGORITHMS FOR BINARY MULTIPLICATION AND DIVISION

1.21 MULTIPLICATION ALGORITHMS

Apart from addition and subtraction, multiplication is another frequently used arithmetic

operation. Several algorithms are available to implement it with binary numbers, both

unsigned as well as signed. We shall show only a few of those in this section.

Paper and Pencil Method

The paper and pencil method that we adopt to perform multiplication of decimal

numbers is also applicable for binary numbers, as illustrated in Figure 1.20 . Note its

similarity with ANDing operation of Boolean algebra. To illustrate binary multiplication,

we have selected two integers, 2 and 3 and shown their multiplication details by

interchanging the multiplier and multiplicand to confirm that the order does not affect

the result.

Fig 1.20 Example of multiplication method with binary numbers

In the first case 3 is multiplied by 2. As 3 in decimal is represented by 0011 and 2 by 0010

in binary, these binary values are written one below the other. Following the basic rule of

multiplication as shown in Figure (c), four partial products are obtained. Note the way

each partial product is placed in offset with the previous partial product, which we are

familiar in our decimal multiplication. These partial products are finally added together

to generate the result. The most important point may be noted here that the product of

two 4-bit numbers may be as long as 8-bit. The same is applicable for 8-bit or 16-bit

numbers, which may generate their products as 16-bit or 32-bit respectively.

Method of Repeated Additions

In computers, multiplication may be implemented in various methods. Another method is

to perform repeated additions. With our example numbers, we may develop a program to

add 2 three times to get the result 6. However, this method is time consuming in

comparison to another method known as Booth’s algorithm, which we are about to

discuss now.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 28

BOOTH’S ALGORITHM

Booth’s algorithm (by Andrew D. Booth) for multiplication uses two’s complement

representation of binary numbers and is applicable for both positive and negative

integers. Before discussing this algorithm, we should be familiar with one technique used

as an important part in this algorithm, which is known as arithmetic right-shift.

Arithmetic right-shift

In normal right-shift operations of any microprocessor, all bits of the container, i.e., a

register, are shifted uniformly one-bit towards right, making the present value of bit (n-1),

= the old value of bit, In this process, the least significant bit is thrown out of the register,

generally pushed into the carry flag, and a new bit, the content of the carry flag is inserted

in the place of most significant bit. This procedure is usually designated as rotate-right-

through-carry. In another variation of this right-shift, the carry flag does not come into

the picture and the least significant bit is shifted into the most significant bit. This

technique is designated as rotate-right-circular.

In case of arithmetic right-shift, all bits are shifted one bit right and the least significant

bit is thrown out, identical as what happens in the case of a normal right-shift operation.

The difference is in the condition of the most significant bit, which remains unchanged

even though it is shifted to its right, after an arithmetic right-shift. It looks like as if after a

normal right-shift, the old content of the most significant bit is copied back to its original

place, keeping it unchanged. Therefore, in arithmetic right-shift, the most significant bit

or the original sign-bit of the number remains unchanged. Two examples of arithmetic

right-shift, one with a positive and another with a negative number are illustrated in

Figure 1.21 using 4-bit format. Note that the same principle is applicable for 8-bit, 16-bit

and all other bit formats in the same manner.

Fig 1.21: Example of 4-bit arithmetic right-shift

Locations and Counters

Booth’s algorithm performs this arithmetic right-shift as many times as the number of

bits involved. In other words, for a 4-bit representation of data, four such arithmetic

right-shifts are performed. For 8-bit data sets, eight right-shifts are necessary and for 16-

bit data, 16 right-shift operations have to be implemented.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 29

Generally, a location (register) is used as counter for this purpose, which is initially

loaded with the number of bits represented (a known and constant value for a computer

system) and is decremented by one after every shift. When this counter becomes zero, the

multiplication operation is considered to be completed as per Booth’s algorithm. The

register usage for Booth’s algorithm is presented in Figure 1.22, which would be referred

for explanation purpose. Instead of registers, we shall designate these as locations, which

is a general designation, and this would be more appropriate in the present context.

Fig 1.22 Locations involved for Booth’s algorithm

 MD (n-bit) is for n-bit multiplicand

 MR (n-bit) is for n-bit multiplier (initially) and LS n-bit of product (finally)

 CR (n-bit) is for counter (from n to 0)

 PD (n-bit) is for MS n-bit of product (finally)

 Mx (1-bit) is for shift out from MR.

 Details of Shift Operation

Now let us consider the shift operation which must be performed n times (till CR = 0). For

the location PD ,it would be arithmetic right-shift. The LS bit of PD, coming out by this

process, would be inserted within MS bit of MR and all original (old) bits MR are to be

shifted one-bit right. The LS bit of MR, which would be coming out by this process, would

be accommodated within Mx and the old (previous) content of Mx would be lost

(discarded). Through Figure 1.23, all these operations are explained and may be

correlated by the readers.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 30

Fig 1.23 : Condition check and actions to be taken before every shift.

Finally, before implementing every shift operation, we are to ensure certain conditions

and perform addition, subtraction or no such operation accordingly. The condition we are

to check is the pattern generated by the two bits, the LS bit of location MR and 1-bit

location Mx (both encircled in Figure 4.8). If these two bits are either 00 or 11, then we do

not implement any addition or subtraction and directly proceed to the shift-right

operation. However, if the pattern is 10 (LS bit of MR is 1 and Mx containing 0) then we

are to subtract content of MD from the present content of PD and the result would be

placed in PD. Note that the original content of PD would be lost. Any eventual borrowing

during this subtraction would be neglected. It is needless to indicate that two’s

complement addition may be performed in place of subtraction. On the other hand, if the

pattern is 01 (LS bit of MR being 0 and Mx having 1), then we are to add MD with the

current content of PD and the result would be stored in PD overwriting PD’s old content.

Any carry generated by this subtraction or addition would be neglected. All four

conditions and actions to be taken against each are shown at right side of Figure 1.23.

Algorithm and Flowchart

Having discussed all basic techniques related to Booth’s algorithm, we are now in a

position to discuss the steps involving it. The algorithm is presented through the

following steps and also presented as flowchart through Figure 1.24.

 Step I: Load multiplicand in MD, multiplier in MR. For negative numbers, two’s

complement format to be used.

 Step 2: Initialize the down counter CR by the number of bits involved.

 Step 3: Clear locations PD (n-bits) and Mx (1-bit).

 Step 4: Check LS bit of MR and Mx jointly. If the pattern is 00 or 11 then go to Step

5. If 10, then PD = PD — MD. If 01, then PD = PD + MD.

 Step 5: Perform arithmetic right-shift with PD, MR and Mx. LS of PD goes to MS of

MR and LS of MR goes to Mx. Old content of Mx is discarded.

 Step 6: Decrement CR by one. If CR is not zero then go to Step 4.

 Step 7: Final result (or the product) is available in PD (higher part) and MR (lower

part).

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 31

Fig 1.24 : Flow chart for Boot’s Algorithm

Example 1 : 2 X 3

All locations are used except Mx, would be 4-bit locations as the maximum range of

numbers covered is less than 7, in our case. We initialize MD by loading 2 (0010) and MR

by 3 (0011). PD and Mx are cleared to 0000 and 0, respectively, and CR 1s loaded by 4, to

count the number of cycles of iteration.

To start the first cycle, we check the pattern formed by LS bit of MR and Mx (indicated by

an underline in the sketch). As they are 10, we subtract MD from PD (conditions indicated

at right side of Figure 1.23), For subtraction, we calculate two’s complement of 0010 in

MD, which is 1110. This is added with PD (presently 0000) and the result 1110, is placed

in PD. The next step is to perform one-bit arithmetic right-shift, with PD, MR and Mx

together. After the shift, we get PD as 1111, MR as 0001 and Mx as 1. Note that LS bit from

PD is shifted to MS bit of MR and LS bit of MR goes to Mx, as we have discussed before.

The next step is to decrement the counter CR by 1, which becomes 3. This completes the

first cycle of iteration and three more cycles remain. The reader may note that in Figure

1.25, those locations which do not contribute in an operational phase are lightly shaded.

As the counter CR is not 0, we start the second cycle by checking two bits, LS of MR and

Mx. This is because, they appear as 11, there is no need for any addition or subtraction

and we may perform only the arithmetic right-shift operation using PD, MR and Mx. After

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 32

shifting right, PD becomes 1111, MR . becomes 1000 and Mx becomes 1. By decrementing

CR by one, we complete the second cycle, and then two more are remaining.

We then check two bits of MR and Mx (underlined) at the starting of the third cycle and as

they are 01, we perform an addition of PD (presently 1111) with MD (having 0010). We

place the result of this addition, 0001, in PD and then perform one-bit arithmetic nght-

shift as before. This shifting makes PD as 0000, MR as 1100 and Mx as 0. Counting down

the location CR, we get 1 and now we may start our last cycle.

As the two bits to be checked (LS of MR and Mx) are presently 00, we skip any addition or

subtraction and simply perform the arithmetic right-shift of all the three locations (PD,

MR and Mx) by one bit. This would leave 0000 in PD, 0110 in MR and 1 in Mx. Lastly, we

decrement CR by 1 and as it is 0, we terminate the whole process. Note that the final

product is now available as an 8-bit value within locations PD and MR (thick underlined),

placed side by side. Location PD is to contain the most significant half and MR

accommodates the least significant half of the product. In our example case, it contains

0000 0110, which is the correct answer (6 1n decimal).

Fig 1.25: Illustration of Booth’s algorithm for 2X3

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 33

Example 2 : 2 x (-3)

Fig 1.26: Illustration of Booth’s algorithm for 2X-3

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 34

Example 2 : (- 2) x 3

Fig 1.27: Illustration of Booth’s algorithm for- 2X3

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 35

Example 2 : (- 2) x (- 3)

Fig 1.28: Illustration of Booth’s algorithm for -2X-3

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 36

1.22 DIVISION ALGORITHMS

Just like multiplication may be carried out by repeated additions, division also may be

completed by repeated subtraction till a negative reminder is encountered. However,

there are other algorithms also for performing divisions with integers. We may also adopt

the method used by us to perform division in longhand method (paper and pencil

method). One such sample calculation is shown in Figure 1.29 . We spend some time on

this as that would give us some insight related to the methods of unsigned binary

division.

 Paper and Pencil Method

To illustrate paper and pencil method of division, we take 5 as dividend and 2 as divisor.

In 4-bit format, these numbers may be written as 0101 and 0010, respectively. This is

shown in Figure 1.29(a). To initiate the process of division, the dividend has to be

scanned from left to right, one digit at a time, and if not divisible, a zero to be placed in the

place of quotient. Therefore, we start our scanning and first encounter with a zero

[underlined in Figure 1.29 (b)]. As it is less than the divisor (10, we may neglect its

leading zeros in this case), the first zero is inserted at the quotient [Figure 1.29 (b)].

Fig 1.29 : Example of division by paper & pencil Method

We continue our scanning from left to right and next encounter with the left most two

digits of the dividend, i.e., 01 (underlined). Again it is found to be less than the divisor,

which forces us to add another zero in the quotient [Figure 1.29(c)]. As we continue our

scanning, we next meet with 010 part of the dividend (its three leading digits) and find

that it is equal (even greater would do) to the divisor. At this point, we may add a | in the

place of quotient, making it 001, write the divisor below the dividend and perform a

subtraction. The remainder in this case is 000. We then write the next considerable digit

of the dividend, i.e., 1 at the right side of the remainder [shown by a vertical downward

arrow in Figure 1.29(d)].

As the last step, we find that the present remainder 0001 is less than divisor. Therefore,

we add another zero with the quotient making it 0010 and complete our process. Thus,

finally, we get a quotient of 0010 (2 in decimal) and a remainder 0001 (1 in decimal) by

our process, matching with our expectations.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 37

An algorithm may be developed for the above method to divide unsigned integers.

However, this method would not be applicable for signed integers, expressed in two’s

complement form. For that purpose, we have to adopt another algorithm (William

Stallings, 2009), as described below.

Locations and Counters

To implement this algorithm for division of signed integers, we would need four

locations; all should be n-bit wide, where ‘n’ is the number of bits being considered for

divisor and dividend. In other words, for 4-bit numbers, we shall need 4-bit wide

locations, for 8-bit numbers, we shall need 8-bit wide locations and so on. We designate

these four locations as V, R, D and C, as indicated in Figure 1.30.

Fig 1.30: Locations involved for division algorithm.

Location V, is to contain n-bit divisor. If the divisor is negative, its two’s complement form

should be loaded in V. We shall only use its content, which would remain unchanged till

the completion of the process. Location C is the n-bit down counter and initially to be

loaded by n. At the end of every cycle, C would be decremented by 1. The operation of

division would be complete when C becomes 0. The n-bit dividend must be expanded to

2n-bit form and be loaded in locations R and Q, where R would contain the most

significant part. If negative, then the dividend should be changed to its two’s complement

form and expanded from n-bit to 2-bit format. In other words, if 2 is 0100, then it should

be expanded as 00000100 and if 7 is 1101, then it should be expanded to 11111101.

However, at the end of operation, R would contain n-bit remainder and Q would contain

n-bit quotient

One bit Left-Shift

Fig 1.31: Detail of one-bit left shift operation for division algorithm

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 38

Let us consider the shifting technique to be implemented at the beginning of each

iteration. In this case it would be a one bit left-shift considering R and Q, simultaneously.

A zero has to be inserted at the LS bit of Q, and the MS bit of Q should be shifted to LS bit

of R. The MS bit of R would be moved out and discarded.

Algorithm for Division of Signed Integers

The algorithm for the division of signed integers is explained through the following steps.

 Step I: Load V by n-bit divisor using two’s complement form for negative numbers.

 Step 2: Load n-bit dividend within R and Q after expanding it to 27-bit format

maintaining its sign as it is.

 Step 3: Load C by the number of bits being considered, i.e., n.

 Step 4: Perform 1-bit left-shift with R-Q, inserting a 0 at the LS bit of Q.

 Step 5: If the divisor (in V) and R have same sign, then replace R by R — V,

otherwise replace R by R+V.

 Step 6: If the sign of R remains unchanged after Step 5, or R becomes 0, then set LS

bit of Q as 1. Otherwise, if the sign of R changes after Step 5 and R becomes non-

zero, then restore the value of R as it was after Step 4.

 Step 7: Decrement C by 1 and if it is not 0, then go to Step 4.

 Step 8: Find the remainder in R. If the divisor and dividend have same signs, then

Q indicates the quotient. Otherwise, its two’s complement would be the correct

quotient.

Note that steps 4 to 7 are involved in the iteration process. Steps 1 to 3 are for

initialization and the Step 8 is for getting the correct result. We next discuss two example

cases for implementing this division algorithm.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 39

Example : 5÷2

Fig 1.32 : Illustration of division algorithm for 5 divided by 2

We start with initialization by loading the divisor (2 in decimal) in location V in its binary
form of 4-bit, i.e., 0010. The counter C is initialized as 4 to represent 4-bit operation. The
dividend (5 in decimal) is converted to its 8-bit representation, i.e., 00000101 and its
lower half 0101 is loaded within location Q and the upper half 0000 1s loaded in location
R.

The first cycle begins with a one-bit left-shift of R and Q and a 0 is inserted at the least
significant position of Q. This changes Q to 1010 and R remains as 0000 after left-shift. As
the MS bit of R and MS bit of V are both 0, a subtraction operation is to be performed to
replace R by R — V. So, two’s complement form of V, 1.e., 1110 is added with R, i.e., 0000
to get 1110, which becomes the value in R at this point. As there is a sign change between
the present content of R (1110) and its previous content (0000), the previous value of R is
restored and R becomes 0000 again. By decrementing C from 4 to 3, we complete the first
cycle and three more cycles are pending.

The second cycle begins with a left-shift of R and Q together changing R to 0001 and Q to
0100. As the present signs of V and R are identical (both are 0), V is subtracted from R

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 40

and the result (1111) is placed in R. This is because of the sign change of R in this process,
R is restored to its original value of 0001. The counter C is decremented by | to make it 2.

In the third cycle, locations R and Q are jointly shifted one-bit left, making R as 0010 and
Q as 1000. As V and R are having same sign at this point, therefore, R is replaced by the
result of R ~ V, which is 0000.Note that the sign of R remains unchanged forcing us to set
the least significant bit of Q as 1.This changes Q to 1001 and R remains as 0000. Finally, C
is decremented to 1, completing the third cycle.

The fourth cycle starts with the left-shift of R as well as Q, changing R to 0001 and Q to
0010. As R and V are of same sign, R is replaced by R — V, which is 1111. This change in
sign of R with respect to is previous sign forces us to replace R by its old value of 0001. C
is now decremented to 0 indicating the completion of the division operation. The result of
the division is now available at Q and R. Q contains the quotient, i.e., 0010 or 2 in decimal
and R contains the remainder 0001 or 1 in decimal. These results indicated that the
operation is correctly performed.

Example : -5 ÷ -2

Fig 1.33 : Illustration of division algorithm for -5 divided by -2

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 41

FIXED POINT AND FLOATING POINT NUMBER REPRESENTATIONS

Digital Computers use Binary number system to represent all types of information inside
the computers. Alphanumeric characters are represented using binary bits (i.e., 0 and 1).
Digital representations are easier to design, storage is easy, accuracy and precision are
greater.

There are various types of number representation techniques for digital number
representation, for example: Binary number system, octal number system, decimal
number system, and hexadecimal number system etc. But Binary number system is most
relevant and popular for representing numbers in digital computer system.

Storing Real Number

These are structures as following below −

There are two major approaches to store real numbers (i.e., numbers with fractional
component) in modern computing. These are (i) Fixed Point Notation and (ii) Floating
Point Notation. In fixed point notation, there are a fixed number of digits after the decimal
point, whereas floating point number allows for a varying number of digits after the
decimal point.

 Fixed-Point Representation

This representation has fixed number of bits for integer part and for fractional part. For
example, if given fixed-point representation is IIII.FFFF, then you can store minimum
value is 0000.0001 and maximum value is 9999.9999. There are three parts of a fixed-
point number representation: the sign field, integer field, and fractional field.

We can represent these numbers using:

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 42

 Signed representation: range from -(2(k-1)-1) to (2(k-1)-1), for k bits.

 1’s complement representation: range from -(2(k-1)-1) to (2(k-1)-1), for k bits.

 2’s complementation representation: range from -(2(k-1)) to (2(k-1)-1), for k bits.

2’s complementation representation is preferred in computer system because of
unambiguous property and easier for arithmetic operations.

Example −Assume number is using 32-bit format which reserve 1 bit for the sign, 15 bits
for the integer part and 16 bits for the fractional part.

Then, -43.625 is represented as following:

Where, 0 is used to represent + and 1 is used to represent . 000000000101011 is 15 bit
binary value for decimal 43 and 1010000000000000 is 16 bit binary value for fractional
0.625.

The advantage of using a fixed-point representation is performance and disadvantage
is relatively limited range of values that they can represent. So, it is usually inadequate
for numerical analysis as it does not allow enough numbers and accuracy. A number
whose representation exceeds 32 bits would have to be stored inexactly.

These are above smallest positive number and largest positive number which can be
store in 32-bit representation as given above format. Therefore, the smallest positive
number is 2-16 ≈ 0.000015 approximate and the largest positive number is (215-1)+(1-2-

16)=215(1-2-16) =32768, and gap between these numbers is 2-16.

We can move the radix point either left or right with the help of only integer field is 1.

Floating-Point Representation

This representation does not reserve a specific number of bits for the integer part or the
fractional part. Instead it reserves a certain number of bits for the number (called the
mantissa or significand) and a certain number of bits to say where within that number
the decimal place sits (called the exponent).

The floating number representation of a number has two part: the first part represents a
signed fixed point number called mantissa. The second part of designates the position of
the decimal (or binary) point and is called the exponent. The fixed point mantissa may be
fraction or an integer. Floating -point is always interpreted to represent a number in the
following form: M x re.

Only the mantissa m and the exponent e are physically represented in the register
(including their sign). A floating-point binary number is represented in a similar manner

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 43

except that is uses base 2 for the exponent. A floating-point number is said to be
normalized if the most significant digit of the mantissa is 1.

So, actual number is (-1)s(1+m)x2(e-Bias), where s is the sign bit, m is the mantissa, e is the
exponent value, and Bias is the bias number.

Note that signed integers and exponent are represented by either sign representation, or
one’s complement representation, or two’s complement representation.

The floating point representation is more flexible. Any non-zero number can be
represented in the normalized form of ±(1.b1b2b3 ...)2x2n This is normalized form of a
number x.

Example −Suppose number is using 32-bit format: the 1 bit sign bit, 8 bits for signed
exponent, and 23 bits for the fractional part. The leading bit 1 is not stored (as it is always
1 for a normalized number) and is referred to as a “hidden bit”.

Then −53.5 is normalized as -53.5=(-110101.1)2=(-1.101011)x25 , which is represented
as following below,

Where 00000101 is the 8-bit binary value of exponent value +5.

Note that 8-bit exponent field is used to store integer exponents -126 ≤ n ≤ 127.

The smallest normalized positive number that fits into 32 bits is
(1.00000000000000000000000)2x2-126=2-126≈1.18x10-38 , and largest normalized
positive number that fits into 32 bits is (1.11111111111111111111111)2x2127=(224-
1)x2104 ≈ 3.40x1038 . These numbers are represented as following below,

The precision of a floating-point format is the number of positions reserved for binary
digits plus one (for the hidden bit). In the examples considered here the precision is
23+1=24.

The gap between 1 and the next normalized floating-point number is known as machine
epsilon. the gap is (1+2-23)-1=2-23for above example, but this is same as the smallest

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 44

positive floating-point number because of non-uniform spacing unlike in the fixed-point
scenario.

Note that non-terminating binary numbers can be represented in floating point
representation, e.g., 1/3 = (0.010101 ...)2 cannot be a floating-point number as its binary
representation is non-terminating.

IEEE Floating point Number Representation −

IEEE (Institute of Electrical and Electronics Engineers) has standardized Floating-Point
Representation as following diagram.

So, actual number is (-1)s(1+m)x2(e-Bias), where s is the sign bit, m is the mantissa, e is the
exponent value, and Bias is the bias number. The sign bit is 0 for positive number and 1
for negative number. Exponents are represented by or two’s complement representation.

According to IEEE 754 standard, the floating-point number is represented in following
ways:

 Half Precision (16 bit): 1 sign bit, 5 bit exponent, and 10 bit mantissa

 Single Precision (32 bit): 1 sign bit, 8 bit exponent, and 23 bit mantissa

 Double Precision (64 bit): 1 sign bit, 11 bit exponent, and 52 bit mantissa

 Quadruple Precision (128 bit): 1 sign bit, 15 bit exponent, and 112 bit mantissa

Special Value Representation −

There are some special values depended upon different values of the exponent and
mantissa in the IEEE 754 standard.

 All the exponent bits 0 with all mantissa bits 0 represents 0. If sign bit is 0, then +0,
else -0.

 All the exponent bits 1 with all mantissa bits 0 represents infinity. If sign bit is 0,
then +∞, else -∞.

 All the exponent bits 0 and mantissa bits non-zero represents denormalized
number.

 All the exponent bits 1 and mantissa bits non-zero represents error.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 1

MODULE II

8051 ARCHITECTURE

2.1 INTRODUCTION

Salient features of 8051 microcontroller are given below.

 Eight bit CPU

 On chip clock oscillator

 4Kbytes of internal program memory (code memory) [ROM]

 128 bytes of internal data memory [RAM]

 64 Kbytes of external program memory address space.

 64 Kbytes of external data memory address space.

 32 bi directional I/O lines (can be used as four 8 bit ports or 32 individually

addressable I/O lines)

 Two 16 Bit Timer/Counter :T0, T1

 Full Duplex serial data receiver/transmitter

 Four Register banks with 8 registers in each bank.

 Sixteen bit Program counter (PC) and a data pointer (DPTR)

 8 Bit Program Status Word (PSW)

 8 Bit Stack Pointer

 Five vector interrupt structure (RESET not considered as an interrupt.)

 8051 CPU consists of 8 bit ALU with associated registers like accumulator ‘A’ , B

register, PSW, SP, 16 bit program counter, stack pointer.

 ALU can perform arithmetic and logic functions on 8 bit variables.

 8051 has 128 bytes of internal RAM which is divided into

 Working registers [00 – 1F]

 Bit addressable memory area [20 – 2F]

 General purpose memory area (Scratch pad memory) [30-7F]

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 2

2.2 THE 8051 ARCHITECTURE.

 8051 has 4 K Bytes of internal ROM. The address space is from 0000 to 0FFFh. If the

program size is more than 4 K Bytes 8051 will fetch the code automatically from

external memory.

 Accumulator is an 8 bit register widely used for all arithmetic and logical

operations. Accumulator is also used to transfer data between external memory. B

register is used along with Accumulator for multiplication and division. A and B

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 3

registers together is also called MATH registers.

 PSW (Program Status Word). This is an 8 bit register which contains the arithmetic

status of ALU and the bank select bits of register banks.

CY AC F0 RS1 RS0 OV - P

CY - carry flag

AC - auxiliary carry flag

F0 - Available for user for general purpose

RS1,RS0 - register bank select bits

OV - overflow

P - parity

 Stack Pointer (SP) – it contains the address of the data item on the top of the stack.

Stack may reside anywhere on the internal RAM. On reset, SP is initialized to 07 so

that the default stack will start from address 08 onwards.

 Data Pointer (DPTR) – DPH (Data pointer higher byte), DPL (Data pointer lower

byte). This is a 16 bit register which is used to furnish address information for

internal and external program memory and for external data memory.

 Program Counter (PC) – 16 bit PC contains the address of next instruction to be

executed. On reset PC will set to 0000. After fetching every instruction PC will

increment by one.

2.3 PIN DIAGRAM

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 4

PINOUT DESCRIPTION

Pins 1-8 PORT 1. Each of these pins can be configured as an input or an output.

Pin 9 RESET. A logic one on this pin disables the microcontroller and clears the contents of
most registers. In other words, the positive voltage on this pin resets the
microcontroller. By applying logic zero to this pin, the program starts execution from
the beginning.

Pins10-17 PORT 3. Similar to port 1, each of these pins can serve as general input or output.
Besides, all of them have alternative functions

Pin 10 RXD. Serial asynchronous communication input or Serial synchronous
communication output.

Pin 11 TXD. Serial asynchronous communication output or Serial
 synchronous communication clock output.

Pin 12 INT0.External Interrupt 0 input

Pin 13 INT1. External Interrupt 1 input

Pin 14 T0. Counter 0 clock input

Pin 15 T1. Counter 1 clock input

Pin 16 WR. Write to external (additional) RAM

Pin 17 RD. Read from external RAM

Pin 18, 19 XTAL2, XTAL1. Internal oscillator input and output. A quartz crystal which
specifies operating frequency is usually connected to these pins.

Pin 20 GND. Ground.

Pin 21-28 Port 2. If there is no intention to use external memory then these port pins are
configured as general inputs/outputs. In case external memory is used, the
higher address byte, i.e. addresses A8-A15 will appear on this port. Even though
memory with capacity of 64Kb is not used, which means that not all eight port
bits are used for its addressing, the rest of them are not available as
inputs/outputs.

Pin 29 PSEN. If external ROM is used for storing program then a logic zero (0) appears
on it every time the microcontroller reads a byte from memory.

Pin 30 ALE. Prior to reading from external memory, the microcontroller puts the lower
address byte (A0-A7) on P0 and activates the ALE output. After receiving signal
from the ALE pin, the external latch latches the state of P0 and uses it as a

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 5

memory chip address. Immediately after that, the ALE pin is returned its
previous logic state and P0 is now used as a Data Bus.

Pin 31 EA. By applying logic zero to this pin, P2 and P3 are used for data and address
transmission with no regard to whether there is internal memory or not. It
means that even there is a program written to the microcontroller, it will not be
executed. Instead, the program written to external ROM will be executed. By
applying logic one to the EA pin, the microcontroller will use both memories, first
internal then external (if exists).

Pin 32-39 PORT 0. Similar to P2, if external memory is not used, these pins can be used as
general inputs/outputs. Otherwise, P0 is configured as address output (A0-A7)
when the ALE pin is driven high (1) or as data output (Data Bus) when the ALE
pin is driven low (0).

Pin 40 VCC. +5V power supply.

2.4 MEMORY ORGANIZATION

Internal RAM organization

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 6

Working Registers

Register Banks: 00h to 1Fh. The 8051 uses 8 general-purpose registers R0 through R7 (R0, R1,

R2, R3, R4, R5, R6, and R7). There are four such register banks. Selection of register bank can be

done through RS1,RS0 bits of PSW. On reset, the default Register Bank 0 will be selected.

Bit Addressable RAM: 20h to 2Fh . The 8051 supports a special feature which allows access to bit

variables. This is where individual memory bits in Internal RAM can be set or cleared. In all there

are 128 bits numbered 00h to 7Fh. Being bit variables any one variable can have a value 0 or 1. A bit

variable can be set with a command such as SETB and cleared with a command such as CLR.

Example instructions are:

SETB 25h ; sets the bit 25h (becomes 1)

CLR 25h ; clears bit 25h (becomes 0)

Note, bit 25h is actually bit 5 of Internal RAM location 24h.

The Bit Addressable area of the RAM is just 16 bytes of Internal RAM located between 20h and 2Fh.

General Purpose RAM: 30h to 7Fh. Even if 80 bytes of Internal RAM memory are available for

general-purpose data storage, user should take care while using the memory location from 00 -2Fh

since these locations are also the default register space, stack space, and bit addressable space. It is

a good practice to use general purpose memory from 30 – 7Fh. The general purpose RAM can be

accessed using direct or indirect addressing modes.

EXTERNAL MEMORY INTERFACING
Eg. Interfacing of 16 K Byte of RAM and 32 K Byte of EPROM to 8051

Number of address lines required for 16 Kbyte memory is 14 lines and that of 32Kbytes of

memory is 15 lines.

The connections of external memory is shown in figure. The lower order address and data bus are

multiplexed. De-multiplexing is done by the latch. Initially the address will appear in the bus and

this latched at the output of latch using ALE signal. The output of the latch is directly connected to

the lower byte address lines of the memory. Later data will be available in this bus. Still the latch

output is address it self. The higher byte of address bus is directly connected to the memory. The

number of lines connected depends on the memory size.

The RD and WR (both active low) signals are connected to RAM for reading and writing the data.

PSEN of microcontroller is connected to the output enable of the ROM to read the data from the

memory.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 7

EA (active low) pin is always grounded if we use only external memory. Otherwise, once the

program size exceeds internal memory the microcontroller will automatically switch to external

memory.

STACK

A stack is a last in first out memory. In 8051 internal RAM space can be used as stack. The

address of the stack is contained in a register called stack pointer. Instructions PUSH and

POP are used for stack operations. When a data is to be placed on the stack, the stack

pointer increments before storing the data on the stack so that the stack grows up as data is

stored (pre-increment). As the data is retrieved from the stack the byte is read from the

stack, and then SP decrements to point the next available byte of stored data (post

decrement). The stack pointer is set to 07 when the 8051 resets. So that default stack

memory starts from address location 08 onwards (to avoid overwriting the default register

bank ie., bank 0).

Eg; Show the stack and SP for the following.

MOV R6, #25H
MOV R1, #12H
MOV R4, #0F3H

[SP]=07
[R6]=25H
[R1]=12H
[R4]=F3H

//CONTENT OF SP IS 07 (DEFAULT VALUE)

//CONTENT OF R6 IS 25H

//CONTENT OF R1 IS 12H

//CONTENT OF R4 IS F3H

PUSH 6

[SP]=08

[08]=[06]=25H

//CONTENT OF 08 IS 25H

PUSH 1 [SP]=09 [09]=[01]=12H //CONTENT OF 09 IS 12H

PUSH 4 [SP]=0A [0A]=[04]=F3H //CONTENT OF 0A IS F3H

POP 6

[06]=[0A]=F3H

[SP]=09 //CONTENT OF 06 IS F3H

POP 1 [01]=[09]=12H [SP]=08 //CONTENT OF 01 IS 12H

POP 4 [04]=[08]=25H [SP]=07 //CONTENT OF 04 IS 25H

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 8

2.5 BASICS OF INTERRUPTS.
During program execution if peripheral devices needs service from microcontroller, device will

generate interrupt and gets the service from microcontroller. When peripheral device activate the

interrupt signal, the processor branches to a program called interrupt service routine. After

executing the interrupt service routine the processor returns to the main program.

Steps taken by processor while processing an interrupt:

1. It completes the execution of the current instruction.

2. PSW is pushed to stack.

3. PC content is pushed to stack.

4. Interrupt flag is reset.

5. PC is loaded with ISR address.

ISR will always ends with RETI instruction. The execution of RETI instruction results in the

following.

1. POP the current stack top to the PC.

2. POP the current stack top to PSW.

Classification of interrupts.

1. External and internal interrupts.

External interrupts are those initiated by peripheral devices through the external pins of

the microcontroller.

Internal interrupts are those activated by the internal peripherals of the microcontroller

like timers, serial controller etc.)

2. Maskable and non-maskable interrupts.

The category of interrupts which can be disabled by the processor using program is called

maskable interrupts.

Non-maskable interrupts are those category by which the programmer cannot disable it

using program.

3. Vectored and non-vectored interrupt.

Starting address of the ISR is called interrupt vector. In vectored interrupts the starting

address is predefined. In non-vectored interrputs, the starting address is provided by the

peripheral as follows.

 Microcontroller receives an interrupt request from external device.

 Controller sends an acknowledgement (INTA) after completing the execution of

current instruction.

 The peripheral device sends the interrupt vector to the microcontroller.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 9

2.6 8051 INTERRUPT STRUCTURE.

8051 has five interrupts. They are maskable and vectored interrupts. Out of these five, two are

external interrupt and three are internal interrupts.

Interrupt source Type Vector address Priority

External interrupt 0 External 0003 Highest

Timer 0 interrupt Internal 000B

External interrupt 1 External 0013

Timer 1 interrupt Internal 001B

Serial interrupt Internal 0023 Lowest

8051 makes use of two registers to deal with interrupts.

6. IE Register

This is an 8 bit register used for enabling or disabling the interrupts. The structure of IE

register is shown below.

7. IP Register.

This is an 8 bit register used for setting the priority of the interrupts.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 10

2.7 TIMERS AND COUNTERS

Timers/Counters are used generally for

 Time reference

 Creating delay

 Wave form properties measurement

 Periodic interrupt generation

 Waveform generation

8051 has two timers, Timer 0 and Timer 1.

Timer in 8051 is used as timer, counter and baud rate generator. Timer always counts up

irrespective of whether it is used as timer, counter, or baud rate generator: Timer is always

incremented by the microcontroller. The time taken to count one digit up is based on master clock

frequency.
If Master CLK=12 MHz,

Timer Clock frequency = Master CLK/12 = 1 MHz

Timer Clock Period = 1micro second

This indicates that one increment in count will take 1 micro second.

The two timers in 8051 share two SFRs (TMOD and TCON) which control the timers, and each timer

also has two SFRs dedicated solely to itself (TH0/TL0 and TH1/TL1).

The following are timer related SFRs in 8051.

 SFR Name Description SFR Address

TH0 Timer 0 High Byte 8Ch

TL0 Timer 0 Low Byte 8Ah

TH1 Timer 1 High Byte 8Dh

TL1 Timer 1 Low Byte 8Bh

TCON Timer Control 88h

TMOD Timer Mode 89h

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 11

TMOD Register

TCON Register

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 12

Timer/ Counter Control Logic.

TIMER MODES

Timers can operate in four different modes. They are as follows

Timer Mode-0: In this mode, the timer is used as a 13-bit UP counter as follows.

Fig. Operation of Timer on Mode-0

The lower 5 bits of TLX and 8 bits of THX are used for the 13 bit count.Upper 3 bits of TLX are

ignored. When the counter rolls over from all 0's to all 1's, TFX flag is set and an interrupt is

generated. The input pulse is obtained from the previous stage. If TR1/0 bit is 1 and Gate bit is 0,

the counter continues counting up. If TR1/0 bit is 1 and Gate bit is 1, then the operation of the

counter is controlled by input. This mode is useful to measure the width of a given pulse fed to

input.

Timer Mode-1: This mode is similar to mode-0 except for the fact that the Timer operates in 16-bit

mode.

Fig: Operation of Timer in Mode 1

Timer Mode-2: (Auto-Reload Mode): This is a 8 bit counter/timer operation. Counting is

performed in TLX while THX stores a constant value. In this mode when the timer overflows i.e. TLX

becomes FFH, it is fed with the value stored in THX. For example if we load THX with 50H then the

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 13

timer in mode 2 will count from 50H to FFH. After that 50H is again reloaded. This mode is useful in

applications like fixed time sampling.

Fig: Operation of Timer in Mode 2

Timer Mode-3: Timer 1 in mode-3 simply holds its count. The effect is same as setting TR1=0.

Timer0 in mode-3 establishes TL0 and TH0 as two separate counters.

Fig: Operation of Timer in Mode 3

Control bits TR1 and TF1 are used by Timer-0 (higher 8 bits) (TH0) in Mode-3 while TR0 and TF0

are available to Timer-0 lower 8 bits(TL0).

2.8 ASSEMBLY LANGUAGE PROGRAMMING

Programming in the sense of Microcontrollers (or any computer) means writing a sequence of
instructions that are executed by the processor in a particular order to perform a predefined task.
Programming also involves debugging and troubleshooting of instructions and instruction
sequence to make sure that the desired task is performed.

Like any language, Programming Languages have certain words, grammar and rules. There are
three types or levels of Programming Languages for 8051 Microcontroller. These levels are based

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 14

on how closely the statements in the language resemble the operations or tasks performed by the
Microcontroller.

The three levels of Programming Languages are:

 Machine Language
 Assembly Language
 High-level Language

MACHINE LANGUAGE

In Machine language or Machine Code, the instructions are written in binary bit patterns i.e.
combination of binary digits 1 and 0, which are stored as HIGH and LOW Voltage Levels. This is the
lowest level of programming languages and is the language that a Microcontroller or
Microprocessor actually understands.

ASSEMBLY LANGUAGE

The next level of Programming Language is the Assembly Language. Since Machine Language or
Code involves all the instructions in 1’s and 0’s, it is very difficult for humans to program using it.
Assembly Language is a pseudo-English representation of the Machine Language. The 8051
Microcontroller Assembly Language is a combination of English like words called Mnemonics and
Hexadecimal codes.
It is also a low level language and requires extensive understanding of the architecture of the
Microcontroller.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 15

HIGH-LEVEL LANGUAGE

The name High-level language means that you need not worry about the architecture or other
internal details of a microcontroller and they use words and statements that are easily understood
by humans.
Few examples of High-level Languages are BASIC, C Pascal, C++ and Java. A program called
Compiler will convert the Programs written in High-level languages to Machine Code.

Why Assembly Language?
Although High-level languages are easy to work with, the following reasons point out the
advantage of Assembly Language

 The Programs written in Assembly gets executed faster and they occupy less memory.
 With the help of Assembly Language, you can directly exploit all the features of a

Microcontroller.
 Using Assembly Language, you can have direct and accurate control of all the

Microcontroller’s resources like I/O Ports, RAM, SFRs, etc.
 Compared to High-level Languages, Assembly Language has less rules and restrictions.

STRUCTURE OF THE 8051 MICROCONTROLLER ASSEMBLY LANGUAGE

The Structure or Syntax of the 8051 Microcontroller Assembly Language is discussed here. Each
line or statement of the assembly language program of 8051 Microcontroller consists of three
fields: Label, Instruction and Comments.

The arrangement of these fields or the order in which they appear is shown below.

[Label:] Instructions [//Comments]

The brackets for Label and Comments mean that these fields are optional and may not be used in
all statements in a program.

Before seeing about these three fields, let us first see an example of how a typical statement or line
in an 8051 Microcontroller Assembly Language looks like.

 TESTLABEL: MOV A, 24H ; THIS IS A SAMPLE COMMENT

In the above statement, the “TESTLABEL” is the name of the Label, “MOV A, 24H” is the Instruction
and the “THIS IS A SAMPLE COMMENT” is a Comment.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 16

LABEL

The Label is programmer chosen name for a Memory Location or a statement in a program. The
Label part of the statement is optional and if present, the Label must be terminated with a Colon (:).
An important point to remember while selecting a name for the Label is that they should reduce
the need for documentation.

INSTRUCTION

The Instruction is the main part of the 8051 Microcontroller Assembly Language Programming as
it is responsible for the task performed by the Microcontroller. Any Instruction in the Assembly
Language consists of two parts: Op-code and Operand(s).

The first part of the Instruction is the Op-code, which is short for Operation Code, specifies the
operation to be performed by the Microcontroller. Op-codes in Assembly Language are called as
Mnemonics. Op-codes are in binary format (used in Machine Language) while the Mnemonic
(which are equivalent to Op-codes) are English like statements.
The second part of the instruction is called the Operand(s) and it represents the Data on which the
operation is performed. There are two types of Operands: the Source Operand and the Destination
Operand. The Source Operand is the Input of the operation and the Destination Operand is where
the result is stored.

COMMENTS

The last part of the Structure of 8051 Assembly Language is the Comments. Comments are
statements included by the developer for easier understanding of the code and is used for proper
documentation of the Program.
Comments are optional and if used, they must begin with a semicolon (;) or double slash (//)
depending on the Assembler.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 17

2.9 ADDRESSING MODES

Various methods of accessing the data are called addressing modes. 8051 addressing modes are

classified as follows.

1. Immediate addressing.

2. Register addressing.

3. Direct addressing.

4. Indirect addressing.

5. Relative addressing.

6. Absolute addressing.

7. Long addressing.

8. Indexed addressing.

9. Bit inherent addressing.

10. Bit direct addressing.

I. IMMEDIATE ADDRESSING.

In this addressing mode the data is provided as a part of instruction itself. In other

words data immediately follows the instruction.

Eg. MOV A,#30H

ADD A, #83 # Symbol indicates the data is immediate.

II. REGISTER ADDRESSING.

In this addressing mode the register will hold the data. One of the eight general

registers (R0 to R7) can be used and specified as the operand.

Eg. MOV A,R0

ADD A,R6

R0 – R7 will be selected from the current selection of register bank. The default

register bank will be bank 0.

III. DIRECT ADDRESSING

There are two ways to access the internal memory. Using direct address and indirect

address. Using direct addressing mode we can not only address the internal memory but SFRs

also. In direct addressing, an 8 bit internal data memory address is specified as part of the

instruction and hence, it can specify the address only in the range of 00H to FFH. In this

addressing mode, data is obtained directly from the memory.
Eg. MOV A,60h

ADD A,30h

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 18

IV. INDIRECT ADDRESSING

The indirect addressing mode uses a register to hold the actual address that will be

used in data movement. Registers R0 and R1 and DPTR are the only registers that can be used

as data pointers. Indirect addressing cannot be used to refer to SFR registers. Both R0 and R1

can hold 8 bit address and DPTR can hold 16 bit address.
Eg. MOV A,@R0

ADD A,@R1

MOVX A,@DPTR

V. INDEXED ADDRESSING.

In indexed addressing, either the program counter (PC), or the data pointer (DTPR)—

is used to hold the base address, and the A is used to hold the offset address. Adding the value

of the base address to the value of the offset address forms the effective address. Indexed

addressing is used with JMP or MOVC instructions. Look up tables are easily implemented

with the help of index addressing.
Eg. MOVC A, @A+DPTR // copies the contents of memory location pointed by the sum of the

accumulator A and the DPTR into accumulator A.

MOVC A, @A+PC // copies the contents of memory location pointed by the sum of the

accumulator A and the program counter into accumulator A.

VI. RELATIVE ADDRESSING.

Relative addressing is used only with conditional jump instructions. The relative

address, (offset), is an 8 bit signed number, which is automatically added to the PC to make

the address of the next instruction. The 8 bit signed offset value gives an address range of

+127 to —128 locations. The jump destination is usually specified using a label and the

assembler calculates the jump offset accordingly. The advantage of relative addressing is that

the program code is easy to relocate and the address is relative to position in the memory.
Eg. SJMP LOOP1

JC BACK

VII. ABSOLUTE ADDRESSING

Absolute addressing is used only by the AJMP (Absolute Jump) and ACALL (Absolute

Call) instructions. These are 2 bytes instructions. The absolute addressing mode specifies the

lowest 11 bit of the memory address as part of the instruction. The upper 5 bit of the

destination address are the upper 5 bit of the current program counter. Hence, absolute

addressing allows branching only within the current 2 Kbyte page of the program memory.
Eg. AJMP LOOP1

ACALL LOOP2

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 19

VIII. LONG ADDRESSING

The long addressing mode is used with the instructions LJMP and LCALL. These are 3

byte instructions. The address specifies a full 16 bit destination address so that a jump or a

call can be made to a location within a 64 Kbyte code memory space.
Eg. LJMP FINISH

LCALL DELAY

IX. BIT INHERENT ADDRESSING

In this addressing, the address of the flag which contains the operand, is implied in the

opcode of the instruction.
Eg. CLR C ; Clears the carry flag to 0

X. BIT DIRECT ADDRESSING

In this addressing mode the direct address of the bit is specified in the instruction. The

RAM space 20H to 2FH and most of the special function registers are bit addressable. Bit

address values are between 00H to 7FH.

Eg. CLR 07h ; Clears the bit 7 of 20h RAM space

SETB 07H ; Sets the bit 7 of 20H RAM space.

2.10 INSTRUCTION SET

1. INSTRUCTION TIMINGS

The 8051 internal operations and external read/write operations are controlled by the oscillator

clock.

T-state, Machine cycle and Instruction cycle are terms used in instruction timings.

T-state is defined as one subdivision of the operation performed in one clock period. The terms 'T-

state' and 'clock period' are often used synonymously.

Machine cycle is defined as 12 oscillator periods. A machine cycle consists of six states and each

state lasts for two oscillator periods. An instruction takes one to four machine cycles to execute an

instruction. Instruction cycle is defined as the time required for completing the execution of an

instruction. The 8051 instruction cycle consists of one to four machine cycles.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 20

Eg. If 8051 microcontroller is operated with 12 MHz oscillator, find the execution time for the

following four instructions.

1. ADD A, 45H

2. SUBB A, #55H

3. MOV DPTR, #2000H

4. MUL AB

Since the oscillator frequency is 12 MHz, the clock period is, Clock period = 1/12 MHz = 0.08333 µS.

Time for 1 machine cycle = 0.08333 µS x 12 =1 µS.

Instruction No. of machine cycles Execution time

1. ADD A, 45H 1 1 µs

2. SUBB A, #55H 2 2 µs

3. MOV DPTR, #2000H 2 2 µs

4. MUL AB 4 4 µs

2. 8051 INSTRUCTIONS

The instructions of 8051 can be broadly classified under the following headings.

 Data transfer instructions

 Arithmetic instructions

 Logical instructions

 Branch instructions

 Subroutine instructions

 Bit manipulation instructions

Data transfer instructions.

In this group, the instructions perform data transfer operations of the following types.

a. Move the contents of a register Rn to A

i. MOV A,R2

ii. MOV A,R7

b. Move the contents of a register A to Rn

i. MOV R4,A

ii. MOV R1,A

c. Move an immediate 8 bit data to register A or to Rn or to a memory

location(direct or indirect)

i. MOV A, #45H

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 21

ii. MOV R6, #51H

iii. MOV 30H, #44H

d. Move the contents of a memory location to A or A to a memory location using

direct and indirect addressing

i. MOV A,
65H

ii. MOV A,
@R0

iii. MOV 45H, A

iv. MOV @R1, A

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 22

e. Move the contents of a memory location to Rn or Rn to a memory location

using direct addressing

i. MOV R3, 65H

ii. MOV 45H, R2

f. Move the contents of memory location to another memory location using

direct and indirect addressing

i. MOV 47H, 65H

ii. MOV 45H, @R0

g. Move the contents of an external memory to A or A to an external memory

i. MOVX A,@R1

ii. MOVX @R0,A

iii. MOVX A,@DPTR

iv. MOVX@DPTR,A

h. Move the contents of program memory to A

i. MOVC A, @A+PC

ii. MOVC A, @A+DPTR

i. Push and Pop instructions

[SP]=07 //CONTENT OF SP IS 07 (DEFAULT

VALUE) MOV R6, #25H [R6]=25H //CONTENT OF R6 IS

25H

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 23

MOV R1, #12H [R1]=12H //CONTENT OF R1 IS

12H MOV R4, #0F3H [R4]=F3H

 //CONTENT OF R4 IS F3H

PUSH 6 [SP]=08 [08]=[06]=25H //CONTENT OF 08

IS 25H PUSH 1 [SP]=09 [09]=[01]=12H //CONTENT OF 09

IS 12H PUSH 4 [SP]=0A [0A]=[04]=F3H //CONTENT OF 0A

IS F3H

POP 6 [06]=[0A]=F3H [SP]=09 //CONTENT OF 06 IS

F3H POP 1 [01]=[09]=12H [SP]=08 //CONTENT OF 01 IS

12H POP 4 [04]=[08]=25H [SP]=07 //CONTENT OF 04 IS

25H

j. Exchange instructions

The content of source ie., register, direct memory or indirect memory will be

exchanged with the contents of destination ie., accumulator.
i. XCH A,R3

ii. XCH A,@R1

iii. XCH A,54h

k. Exchange digit. Exchange the lower order nibble of Accumulator (A0-A3) with

lower order nibble of the internal RAM location which is indirectly addressed

by the register.

i. XCHD A,@R1

ii. XCHD A,@R0

Arithmetic instructions.

The 8051 can perform addition, subtraction. Multiplication and division operations on 8 bit
numbers.

Addition

In this group, we have instructions to
i. Add the contents of A with immediate data with or without carry.

i. ADD A, #45H
ii. ADDC A, #OB4H

ii. Add the contents of A with register Rn with or without carry.
i. ADD A, R5

ii. ADDC A, R2

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 24

iii. Add the contents of A with contents of memory with or without carry using
direct and indirect addressing
i. ADD A, 51H

ii. ADDC A, 75H
iii. ADD A, @R1
iv. ADDC A, @R0

CY AC and OV flags will be affected by this operation

Subtraction
In this group, we have instructions to

i. Subtract the contents of A with immediate data with or without carry.
i. SUBB A, #45H

ii. SUBB A, #OB4H
ii. Subtract the contents of A with register Rn with or without borrow.

i. SUBB A, R5
ii. SUBB A, R2

iii. Subtract the contents of A with contents of memory with or without carry using
direct and indirect addressing
i. SUBB A, 51H

ii. SUBB A, 75H
iii. SUBB A, @R1
iv. SUBB A, @R0

CY AC and OV flags will be affected by this operation.

Multiplication

MUL AB. This instruction multiplies two 8 bit unsigned numbers which are stored in A and
B register. After multiplication the lower byte of the result will be stored in accumulator
and higher byte of result will be stored in B register.

 MOV A,#45H ;[A]=45H
 MOV B,#0F5H ;[B]=F5H
 MUL AB ;[A] x [B] = 45 x F5 = 4209
 ;[A]=09H, [B]=42H
Division

DIV AB. This instruction divides the 8 bit unsigned number which is stored in A by the 8 bit
unsigned number which is stored in B register. After division the result will be stored in
accumulator and remainder will be stored in B register.

 Eg. MOV A,#45H ;[A]=0E8H
 MOV B,#0F5H ;[B]=1BH

DIV AB ;[A] / [B] = E8 /1B = 08 H with remainder 10H

 ;[A] = 08H, [B]=10H

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 25

DA A (Decimal Adjust After Addition).

When two BCD numbers are added, the answer is a non-BCD number. To get the result in BCD,

we use DA A instruction after the addition. DA A works as follows.

 If lower nibble is greater than 9 or auxiliary carry is 1, 6 is added to lower nibble.
 If upper nibble is greater than 9 or carry is 1, 6 is added to upper nibble.

 Eg 1: MOV A,#23H

MOV R1,#55H
ADD A,R1 // [A]=78
DA A // [A]=78 no changes in the accumulator after DA A

Eg 2: MOV A,#53H

MOV R1,#58H

ADD A,R1 // [A]=ABh

DA A // [A]=11, C=1 . ANSWER IS 111. Accumulator data is changed

after DA A

Increment: increments the operand by one.

INC A INC Rn INC DIRECT INC @RiINC DPTR

INC increments the value of source by 1. If the initial value of register is FFh, incrementing the

value will cause it to reset to 0. The Carry Flag is not set when the value "rolls over" from 255 to

0.

In the case of "INC DPTR", the value two-byte unsigned integer value of DPTR is incremented. If

the initial value of DPTR is FFFFh, incrementing the value will cause it to reset to 0.

Decrement: decrements the operand by one.

DEC A DEC Rn DEC DIRECT DEC @Ri

DEC decrements the value of source by 1. If the initial value of is 0, decrementing the value will

cause it to reset to FFh. The Carry Flag is not set when the value "rolls over" from 0 to FFh.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 26

 Logical Instructions

Logical AND

ANL destination, source: ANL does a bitwise "AND" operation between source and destination,

leaving the resulting value in destination. The value in source is not affected. "AND" instruction

logically AND the bits of source and destination.

ANL A,#DATA

ANL A, Rn ANL

A,DIRECT ANL

A,@Ri

ANL DIRECT,A ANL DIRECT, #DATA

Logical OR

ORL destination, source:ORL does a bitwise "OR" operation between source and destination,

leaving the resulting value in destination. The value in source is not affected. " OR " instruction

logically OR the bits of source and destination.

ORL A,#DATA

ORL A, Rn ORL

A,DIRECT ORL

A,@Ri

ORL DIRECT,A ORL DIRECT, #DATA

Logical Ex-OR

XRL destination, source: XRL does a bitwise "EX-OR" operation between source and

destination, leaving the resulting value in destination. The value in source is not affected. "

XRL " instruction logically EX-OR the bits of source and destination.

XRL A,#DATA XRL

A,Rn XRL A,DIRECT

XRL A,@Ri

XRL DIRECT,A XRL DIRECT, #DATA

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 27

Logical NOT

CPL complements operand, leaving the result in operand. If operand is a single bit then the state

of the bit will be reversed. If operand is the Accumulator then all the bits in the Accumulator

will be reversed.

CPL A, CPL C, CPL bit address

SWAP A – Swap the upper nibble and lower nibble of A.

Rotate Instructions

RR A

This instruction is rotate right the accumulator. Its operation is illustrated below. Each bit is
shifted one location to the right, with bit 0 going to bit 7.

RL A

Rotate left the accumulator. Each bit is shifted one location to the left, with bit 7 going to bit 0

RRC A

Rotate right through the carry. Each bit is shifted one location to the right, with bit going

into the carry bit in the PSW, while the carry was at goes into bit 7

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 28

RLC A

Rotate left through the carry. Each bit is shifted one location to the left, with bit 7 going

into the carry bit in the PSW, while the carry goes into bit 0.

Branch (JUMP) Instructions

Jump and Call Program Range

There are 3 types of jump instructions. They are:-
1. Relative Jump
2. Short Absolute Jump
3. Long Absolute Jump

Relative Jump

Jump that replaces the PC (program counter) content with a new address that is greater
than (the address following the jump instruction by 127 or less) or less than (the address
following the jump by 128 or less) is called a relative jump. Schematically, the relative jump
can be shown as follows: -

The advantages of the relative jump are as follows:-

1. Only 1 byte of jump address needs to be specified in the 2's complement form,
ie. For jumping ahead, the range is 0 to 127 and for jumping back, the range is -1 to -
128.

2. Specifying only one byte reduces the size of the instruction and speeds up
program execution.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 29

3. The program with relative jumps can be relocated without reassembling to
generate absolute jump addresses.

Disadvantages of the absolute jump: -

1. Short jump range (-128 to 127 from the instruction following the jump instruction)

Instructions that use Relative Jump

SJMP <relative address>; this is unconditional jump

The remaining relative jumps are conditional jumps

JC <relative address> JNC <relative address>

JB bit, <relative address>

JNB bit, <relative address>

JBC bit, <relative address>

CJNE <destination byte>, <source byte>,

<relative address>

DJNZ <byte>, <relative address>

JZ <relative address> JNZ <relative address>

Short Absolute Jump

In this case only 11bits of the absolute jump address are needed. The absolute jump
address is calculated in the following manner.

In 8051, 64 kbyte of program memory space is divided into 32 pages of 2 kbyte each. The
hexadecimal addresses of the pages are given as follows:-

Page (Hex) Address (Hex)

00 0000 - 07FF
01 0800 - 0FFF
02 1000 - 17FF
03 1800 - 1FFF
.
.
1E F000 - F7FF
1F F800 - FFFF

It can be seen that the upper 5bits of the program counter (PC) hold the page number and
the lower 11bits of the PC hold the address within that page. Thus, an absolute address is
formed by taking page numbers of the instruction (from the program counter) following
the jump and attaching the specified 11bits to it to form the 16-bit address.

Advantage: The instruction length becomes 2 bytes.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 30

Example of short absolute jump: -

ACALL <address 11>

AJMP <address 11>

Long Absolute Jump/Call

Applications that need to access the entire program memory from 0000H to FFFFH use
long absolute jump. Since the absolute address has to be specified in the op-code, the
instruction length is 3 bytes (except for JMP @ A+DPTR). This jump is not re-locatable.

Example: -

LCALL <address 16>

LJMP <address 16>

JMP @A+DPTR

Another classification of jump instructions is

1. Unconditional Jump
2. Conditional Jump

1. The unconditional jump is a jump in which control is transferred unconditionally to the

target location.
a. LJMP (long jump). This is a 3-byte instruction. First byte is the op-code and

second and third bytes represent the 16-bit target address which is any memory
location from 0000 to FFFFH
eg: LJMP 3000H

b. AJMP: this causes unconditional branch to the indicated address, by loading the
11 bit address to 0 -10 bits of the program counter. The destination must be
therefore within the same 2K blocks.

c. SJMP (short jump). This is a 2-byte instruction. First byte is the op-code and
second byte is the relative target address, 00 to FFH (forward +127 and
backward -128 bytes from the current PC value). To calculate the target address
of a short jump, the second byte is added to the PC value which is address of the
instruction immediately below the jump.

2. Conditional Jump instructions.

JBC Jump if bit ＝ 1 and clear bit

JNB Jump if bit ＝ 0

JB Jump if bit ＝ 1

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 31

JNC Jump if CY ＝ 0

JC Jump if CY ＝ 1
CJNE reg,#data Jump if byte ≠ #data
CJNE A,byte Jump if A ≠ byte
DJNZ Decrement and Jump if A ≠ 0
JNZ Jump if A ≠ 0
JZ Jump if A ＝ 0

All conditional jumps are short jumps.

Bit level jump instructions:

Bit level JUMP instructions will check the conditions of the bit and if condition is true, it jumps to

the address specified in the instruction. All the bit jumps are relative jumps.

JB bit, rel ; jump if the direct bit is set to the relative address specified.

JNB bit, rel ; jump if the direct bit is clear to the relative address specified.

JBC bit, rel ; jump if the direct bit is set to the relative address specified and then clear the bit.

Subroutine CALL And RETURN Instructions

Subroutines are handled by CALL and RET instructions
There are two types of CALL instructions

1. LCALL address(16 bit)
This is long call instruction which unconditionally calls the subroutine located at the

indicated 16 bit address. This is a 3 byte instruction. The LCALL instruction works as

follows.

a. During execution of LCALL, [PC] = [PC]+3; (if address where LCALL resides is say, 0x3254;
during execution of this instruction [PC] = 3254h + 3h = 3257h

b. [SP]=[SP]+1; (if SP contains default value 07, then SP increments and [SP]=08
c. [[SP]] = [PC7-0]; (lower byte of PC content ie., 57 will be stored in memory location 08.
d. [SP]=[SP]+1; (SP increments again and [SP]=09)
e. [[SP]] = [PC15-8]; (higher byte of PC content ie., 32 will be stored in memory location 09.

 With these the address (0x3254) which was in PC is stored in stack.
f. [PC]= address (16 bit); the new address of subroutine is loaded to PC. No flags are

affected.

2. ACALL address(11 bit)

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC Papady | 32

This is absolute call instruction which unconditionally calls the subroutine located at

the indicated 11 bit address. This is a 2 byte instruction. The SCALL instruction

works as follows.

a. During execution of SCALL, [PC] = [PC]+2; (if address where LCALL resides is say, 0x8549;
during execution of this instruction [PC] = 8549h + 2h = 854Bh

b. [SP]=[SP]+1; (if SP contains default value 07, then SP increments and [SP]=08
c. [[SP]] = [PC7-0]; (lower byte of PC content ie., 4B will be stored in memory location 08.
d. [SP]=[SP]+1; (SP increments again and [SP]=09)

e. [[SP]] = [PC15-8]; (higher byte of PC content ie., 85 will be stored in memory location 09.

With these the address (0x854B) which was in PC is stored in stack.

f. [PC10-0]= address (11 bit); the new address of subroutine is loaded to PC. No flags are
affected.

RET instruction

RET instruction pops top two contents from the stack and load it to PC.

g. [PC15-8] = [[SP]] ;content of current top of the stack will be moved to higher byte of PC.
h. [SP]=[SP]-1; (SP decrements)
i. [PC7-0] = [[SP]] ;content of bottom of the stack will be moved to lower byte of PC.
j. [SP]=[SP]-1; (SP decrements again)

Bit manipulation instructions.

8051 has 128 bit addressable memory. Bit addressable SFRs and bit addressable PORT pins. It

is possible to perform following bit wise operations for these bit addressable locations.

1. LOGICAL AND

a. ANL C,BIT(BIT ADDRESS) ; ‘Logically and’ carry and content of bit address, store result in carry
b. ANL C, /BIT; ; ‘Logically and’ carry and complement of content of bit address, store result in carry

2. LOGICAL OR
a. ORL C,BIT(BIT ADDRESS) ; ‘Logically or’ carry and content of bit address, store result in carry
b. ORL C, /BIT; ; ‘Logically or’ carry and complement of content of bit address, store result in

carry

3. CLR bit
a. CLR bit ; Content of bit address specified will be cleared.
b. CLR C ; Content of carry will be cleared.

4. CPL bit
a. CPL bit ; Content of bit address specified will be complemented.

b. CPL C ; Content of carry will be complemented

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 1

MODULE III

PROGRAMMING AND INTERFACING OF 8051

3.1 SIMPLE PROGRAMMING EXAMPLES IN ASSEMBLY LANGUAGE

ASSEMBLER DIRECTIVES.

Assembler directives tell the assembler to do something other than creating the machine code
for an instruction. In assembly language programming, the assembler directives instruct the
assembler to

1. Process subsequent assembly language instructions
2. Define program constants
3. Reserve space for variables

The following are the widely used 8051 assembler directives.

ORG (origin)

The ORG directive is used to indicate the starting address. It can be used only when the
program counter needs to be changed. The number that comes after ORG can be either in hex
or in decimal.

Eg: ORG 0000H ; Set PC to 0000.

EQU and SET

EQU and SET directives assign numerical value or register name to the specified symbol
name.

EQU is used to define a constant without storing information in the memory. The symbol
defined with EQU should not be redefined.

SET directive allows redefinition of symbols at a later stage.

DB (DEFINE BYTE)

The DB directive is used to define an 8 bit data. DB directive initializes memory with 8 bit
values. The numbers can be in decimal, binary, hex or in ASCII formats. For decimal, the 'D'
after the decimal number is optional, but for binary and hexadecimal, 'B' and ‘H’ are required.
For ASCII, the number is written in quotation marks (‘LIKE This).

DATA1: DB 40H ; hex
DATA2: DB 01011100B ; b i n a r y
DATA3: DB 48 ; decimal

DATA4: DB ' HELLO W’ ; ASCII

END

The END directive signals the end of the assembly module. It indicates the end of the program
to the assembler. Any text in the assembly file that appears after the END directive is ignored.
If the END statement is missing, the assembler will generate an error message

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 2

3.2 ASSEMBLY LANGUAGE PROGRAMS.

1. Write a program to add the values of locations 50H and 51H and store the result in

locations in 52h and 53H.

ORG 0000H ; Set program counter 0000H

MOV A,50H ; Load the contents of Memory location 50H into A ADD ADD A,51H

 ; Add the contents of memory 51H with CONTENTS A

MOV 52H,A ; Save the LS byte of the result in 52H

MOV A, #00 ; Load 00H into A

ADDC A, #00 ; Add the immediate data and carry to A

MOV 53H,A ; Save the MS byte of the result in location 53h

END

2. Write a program to store data FFH into RAM memory locations 50H to 58H

using direct addressing mode

ORG 0000H ; Set program counter 0000H

MOV A, #0FFH ; Load FFH into A

MOV 50H, A ; Store contents of A in location 50H

MOV 51H, A ; Store contents of A in location 5IH

MOV 52H, A ; Store contents of A in location 52

H MOV 53H, A ; Store contents of A in location 53H

MOV 54H, A ; Store contents of A in location 54H

 MOV 55H, A ; Store contents of A in location 55H

MOV 56H, A ; Store contents of A in location 56H

MOV 57H, A ; Store contents of A in location 57H

MOV 58H, A ; Store contents of A in location 58H

END

3. Write a program to subtract a 16 bit number stored at locations 51H-52H from 55H-

56H and store the result in locations 40H and 41H. Assume that the least significant

byte of data or the result is stored in low address. If the result is positive, then store

00H, else store 01H in 42H.

ORG 0000H ; Set program counter 0000H

MOV A, 55H ; Load the contents of memory location 55 into A

CLR C ; Clear the borrow flag

SUBB A,51H ; Sub the contents of memory 51H from contents of A

MOV 40H, A ; Save the LS Byte of the result in location 40H

MOV A, 56H ; Load the contents of memory location 56H into A

SUBB A, 52H ; Subtract the content of memory 52H from the content A

MOV 41H, ; Save the MS byte of the result in location 41H.

MOV A, #00 ; Load 005 into A

ADDC A, #00 ; Add the immediate data and the carry flag to A

MOV 42H, A ; If result is positive, store00H, else store 0lH in 42H

 END

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 3

4. Write a program to add two 16 bit numbers stored at locations 51H-52H and 55H-56H

and store the result in locations 40H, 41H and 42H. Assume that the least significant

byte of data and the result is stored in low address and the most significant byte of

data or the result is stored in high address.

ORG 0000H ; Set program counter 0000H

MOV A,51H ; Load the contents of memory location 51H into A

ADD A,55H ; Add the contents of 55H with contents of A

MOV 40H,A ; Save the LS byte of the result in location 40H

MOV A,52H ; Load the contents of 52H into A

ADDC A,56H ; Add the contents of 56H and CY flag with A

MOV 41H,A ; Save the second byte of the result in 41H

MOV A,#00 ; Load 00H into A

ADDC A,#00 ; Add the immediate data 00H and CY to A

MOV 42H,A ; Save the MS byte of the result in location 42H

END

5. Write a program to store data FFH into RAM memory locations 50H to 58H using

indirect addressing mode.

ORG 0000H ; Set program counter 0000H

MOV A, #0FFH ; Load FFH into A

MOV RO, #50H ; Load pointer, R0-50H

MOV R5, #08H ; Load counter, R5-08H

Start:MOV @RO, A ; Copy contents of A to RAM pointed by R0

 INC RO ; Increment pointer

DJNZ R5, start ; Repeat until R5 is zero

 END

6. Write a program to add two Binary Coded Decimal (BCD) numbers stored at

locations 60H and 61H and store the result in BCD at memory locations 52H and

53H. Assume that the least significant byte of the result is stored in low address.

ORG 0000H ; Set program counter 00004

MOV A,60H ; Load the contents of memory location 60H into A

ADD A,61H ; Add the contents of memory location 61H with contents of A

DA A ; Decimal adjustment of the sum in A

MOV 52H, A ; Save the least significant byte of the result in location 52H

 MOV A,#00 ; Load 00H into .A

ADDC A,#00H ; Add the immediate data and the contents of carry flag to A

 MOV 53H,A ; Save the most significant byte of the result in location 53H

END

7. Write a program to clear 10 RAM locations starting at RAM address 1000H.

ORG 0000H ;Set program counter 0000H

MOV DPTR, #1000H ;Copy address 1000H to DPTR

CLR A ;Clear A

MOV R6, #0AH ;Load 0AH to R6

again: MOVX @DPTR,A ;Clear RAM location pointed by DPTR

INC DPTR ;Increment DPTR

DJNZ R6, again ;Loop until counter R6=0

END

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 4

8. Write a program to compute 1 + 2 + 3 + N (say N=15) and save the sum at70H

ORG 0000 H ; Set program counter 0000H

N EQU 15

MOV R 0 ,#00 ; Clear R0

CLR A ; Clear A

again: INC R 0 ; Increment R0

ADD A, R0 ; Add the contents of R0 with A

 CJNE R 0,# N, again ; Loop until counter, R0, N

MOV 70 H,A ; Save the result in location 70H

END

9. Write a program to multiply two 8 bit numbers stored at locations 70H and 71H and store the

result at memory locations 52H and 53H. Assume that the least significant byte of the result is

stored in low address.

ORG 0000H ; Set program counter 00 OH

MOV A, 70H ; Load the contents of memory location 70h into A

MOV B, 71H ; Load the contents of memory location 71H into B

MUL AB ; Perform multiplication

MOV 52H,A ; Save the least significant byte of the result in location 52H

MOV 53H,B ; Save the most significant byte of the result in location 53

END

10. Ten 8 bit numbers are stored in internal data memory from location 5oH. Write

a program to increment the data.

Assume that ten 8 bit numbers are stored in internal data memory from location

50H, hence R0 or R1 must be used as a pointer.

The program is as follows.

OPT 0000H

MOV R0,#50H

MOV R3,#0AH

Loopl: INC @R0

INC RO

DJNZ R3, loop

 END

11. Write a program to find the average of five 8 bit numbers. Store the result in H.

(Assume that after adding five 8 bit numbers, the result is 8 bit only).

ORG 0000H

MOV 40H,#05H

MOV 41H,#55H

MOV 42H,#06H

MOV 43H,#1AH

MOV 44H,#09H

MOV R0,#40H

MOV R5,#05H

MOV B,R5 CLR A

Loop: ADD A,@RO

 INC RO

DJNZ R5,Loop

DIV AB

MOV 55H,A
END

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 5

12. Write a program to find the cube of an 8 bit number program is as follows
ORG 0000H

MOV R1,#N

MOV A,R1

MOV B,R1

MUL AB //SQUARE IS COMPUTED MOV R2, B

MOV B, R1
MUL AB
MOV 50,A
MOV 51,B
MOV A,R2
MOV B, R1
MUL AB
ADD A, 51H
MOV 51H, A
MOV 52H, B
MOV A, # 00H
ADDC A, 52H
MOV 52H, A //CUBE IS STORED IN 52H,51H,50H

 END

13. Write a program to exchange the lower nibble of data present in external memory

6000H and 6001H

ORG 0000H ; S e t p r o g r a m c o u n t e r 0 0h

MOV DPTR, # 6000 H ; Copy address 6000 H to DPTR

MOVX A, @DPTR ; C o p y c o n t e n t s o f 6 0 0 0 H t o A

MOV R0, #45H ; L o a d p o i n t e r , R 0 = 4 5 H
MOV @RO, A ; C o p y c o n t o f A t o R A M p o i n t e d b y R0
INC DPL ; I n c r e m e n t p o i n t e r

MOVX A, @DPTR ; C o p y c o n t e n t s o f 6 0 0 1 H t o A

XCHD A, @R0 ; E x c h a n g e l o w e r n i b b l e o f A w i t h R A M p o i n t e

d b y R O

MOVX @DPTR, A ; C o p y c o n t e n t s o f A t o 6 0 0 1 H

 DEC DPL ; D e c r e m e n t p o i n t e r
MOV A, @R0 ; C o p y c o n t of R A M p o i n t e d b y R 0 t o A
MOVX @DPTR, A ; C o p y c o n t o f A t o R A M p o i n t e d b y D P T R

END

14. Write a program to count the number of and o's of 8 bit data stored in location 6000H.
ORG 00008 ; Set program counter 00008

MOV DPTR, #6000h ; Copy address 6000H to DPTR

MOVX A, @DPTR ; Copy num be r t o A
MOV R0,#08 ; Copy 08 in RO
MOV R2,#00 ; C o py 00 in R 2

MOV R3,#00 ; C o py 00 in R 3

CLR C ; Clear carry flag
BACK: RLC A ; R o t a t e A t h r o u g h c a r r y f l a g
JC NEXT ; I f C F = 1 , b r a n c h t o n e x t

INC R2 ; I f C F = 0 , i n c r e m e n t R 2

AJMP NEXT2

 NEXT: INC R3 ; I f C F = 1 , i n c r e m e n t R 3

NEXT2: DJNZ RO,BACK ; R e p e a t u n t i l R O i s z e r o

END

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 6

15. Write a program to shift a 24 bit number stored at 57H-55H to the left logically four

places. Assume that the least significant byte of data is stored in lower address.

ORG 0000H ; Set program counter 0000h

MOV R1,#04 ; Set up loop count to 4

again: MOV A,55H ; Place the least significant byte of data in A

CLR C ; Clear tne carry flag

RLC A ; Rotate contents of A (55h) left through carry

 MOV 55H,A

MOV A,56H

RLC A ; Rotate contents of A (56H) left through carry

MOV 56H,A

MOV A,57H

RLC A ; Rotate contents of A (57H) left through carry

MOV 57H,A

DJNZ R1,again ; Repeat until R1 is zero

 END

3.3 INTERFACING WITH 8051 USING ASSEMBLY LANGUAGE PROGRAMMING:

LED INTERFACING TO 8051

Blinking 1 LED using 8051

This is the first project regarding 8051 and of course one of the simplest, blinking LED using

8051. The microcontroller used here is AT89S51 In the circuit, push button switch S1,

capacitor C3 and resistor R3 forms the reset circuitry. When S1 is pressed, voltage at the

reset pin (pin9) goes high and this resets the chip. C1, C2 and X1 are related to the on chip

oscillator which produces the required clock frequency. P1.0 (pin1) is selected as the output

pin. When P1.o goes high the transistor Q1 is forward biased and LED goes ON. When P1.0

goes low the transistor goes to cut off and the LED extinguishes. The transistor driver circuit

for the LED can be avoided and the LED can be connected directly to the P1.0 pin with a

series current limiting resistor(~1K). The time for which P1.o goes high and low (time

period of the LED) is determined by the program. The circuit diagram for blinking 1 LED is

shown below.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 7

Program

START: CPL P1.0

 ACALL WAIT

 SJMP START

WAIT: MOV R4,#05H

WAIT1: MOV R3,#00H

WAIT2: MOV R2,#00H

WAIT3: DJNZ R2,WAIT3

 DJNZ R3,WAIT2

 DJNZ R4,WAIT1

 RET

Blinking 2 LED alternatively using 8051.

This circuit can blink two LEDs alternatively. P1.0 and P1.1 are assigned as the outputs.

When P1.0 goes high P1.0 goes low and vice versa and the LEDs follow the state of the

corresponding port to which it is connected. Here there is no driver stage for the LEDs and

they are connected directly to the corresponding ports through series current limiting

resistors (R1 & R2). Circuit diagram is shown below.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 8

Program

START: CPL P1.0

 ACALL WAIT

 CPL P1.0

 CPL P1.1

 ACALL WAIT

 CPL P1.1

 SJMP START

WAIT: MOV R4,#05H

WAIT1: MOV R3,#00H

WAIT2: MOV R2,#00H

WAIT3: DJNZ R2,WAIT3

 DJNZ R3,WAIT2

 DJNZ R4,WAIT1

 RET

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 9

INTERFACING 7 SEGMENT DISPLAY TO 8051.

A NOTE ABOUT 7 SEGMENT LED DISPLAY.

This article is about how to interface a seven segment LED display to an 8051

microcontroller. 7 segment LED display is very popular and it can display digits from 0 to 9

and quite a few characters like A, b, C, ., H, E, e, F, n, o,t,u,y, etc. Knowledge about how to

interface a seven segment display to a micro controller is very essential in designing

embedded systems. A seven segment display consists of seven LEDs arranged in the form of

a squarish ‘8’ slightly inclined to the right and a single LED as the dot character. Different

characters can be displayed by selectively glowing the required LED segments. Seven

segment displays are of two types, common cathode and common anode. In common

cathode type , the cathode of all LEDs are tied together to a single terminal which is usually

labeled as ‘com‘ and the anode of all LEDs are left alone as individual pins labeled as a, b, c,

d, e, f, g & h (or dot) . In common anode type, the anode of all LEDs are tied together as a

single terminal and cathodes are left alone as individual pins. The pin out scheme and

picture of a typical 7 segment LED display is shown in the image below.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 10

Digit drive pattern.

Digit drive pattern of a seven segment LED display is simply the different logic combinations

of its terminals ‘a’ to ‘h‘ in order to display different digits and characters. The common

digit drive patterns (0 to 9) of a seven segment display are shown in the table below.

Digit a b c d e f g

0 1 1 1 1 1 1 0

1 0 1 1 0 0 0 0

2 1 1 0 1 1 0 1

3 1 1 1 1 0 0 1

4 0 1 1 0 0 1 1

5 1 0 1 1 0 1 1

6 1 0 1 1 1 1 1

7 1 1 1 0 0 0 0

8 1 1 1 1 1 1 1

9 1 1 1 1 0 1 1

The circuit diagram shown above is of an AT89S51 microcontroller based 0 to 9 counter

which has a 7 segment LED display interfaced to it in order to display the count. This simple

circuit illustrates two things. How to setup simple 0 to 9 up counter using 8051 and more

importantly how to interface a seven segment LED display to 8051 in order to display a

particular result. The common cathode seven segment display D1 is connected to the Port 1

of the microcontroller (AT89S51) as shown in the circuit diagram. R3 to R10 are current

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 11

limiting resistors. S3 is the reset switch and R2,C3 forms a debouncing circuitry. C1, C2 and

X1 are related to the clock circuit. The software part of the project has to do the following

tasks.

 Form a 0 to 9 counter with a predetermined delay (around 1/2 second here).

 Convert the current count into digit drive pattern.

 Put the current digit drive pattern into a port for displaying.

All the above said tasks are accomplished by the program given below.

PROGRAM.

ORG 000H //initial starting address

START: MOV A,#00001001B // initial value of accumulator

MOV B,A

MOV R0,#0AH //Register R0 initialized as counter which counts from 10 to

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 12

0

LABEL: MOV A,B

INC A

MOV B,A

MOVC A,@A+PC // adds the byte in A to the program counters address

MOV P1,A

ACALL DELAY // calls the delay of the timer

DEC R0 //Counter R0 decremented by 1

MOV A,R0 // R0 moved to accumulator to check if it is zero in next

instruction.

JZ START //Checks accumulator for zero and jumps to START.

Done to check if counting has been finished.

SJMP LABEL

DB 3FH // digit drive pattern for 0

DB 06H // digit drive pattern for 1

DB 5BH // digit drive pattern for 2

DB 4FH // digit drive pattern for 3

DB 66H // digit drive pattern for 4

DB 6DH // digit drive pattern for 5

DB 7DH // digit drive pattern for 6

DB 07H // digit drive pattern for 7

DB 7FH // digit drive pattern for 8

DB 6FH // digit drive pattern for 9

DELAY: MOV R4,#05H // subroutine for delay

WAIT1: MOV R3,#00H

WAIT2: MOV R2,#00H

WAIT3: DJNZ R2,WAIT3

DJNZ R3,WAIT2

DJNZ R4,WAIT1

RET

END

ABOUT THE PROGRAM.

Instruction MOVC A,@A+PC is the instruction that produces the required digit drive pattern

for the display. Execution of this instruction will add the value in the accumulator A with the

content of the program counter(address of the next instruction) and will move the data

present in the resultant address to A. After this the program resumes from the line after

MOVC A,@A+PC.

In the program, initial value in A is 00001001B. Execution of MOVC A,@A+PC will add

oooo1001B to the content in PC (address of next instruction). The result will be the

address of label DB 3FH (line15) and the data present in this address ie 3FH (digit drive

pattern for 0) gets moved into the accumulator. Moving this pattern in the accumulator to

Port 1 will display 0 which is the first count.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 13

At the next count, value in A will advance to 00001010 and after the execution of MOVC

A,@+PC ,the value in A will be 06H which is the digit drive pattern for 1 and this will display

1 which is the next count and this cycle gets repeated for subsequent counts.

The reason why accumulator is loaded with 00001001B (9 in decimal) initially is that the

instructions from line 9 to line 15 consumes 9 bytes in total.

3.4 PROGRAMMING IN C

Embedded C

For programming the embedded hardware devices, we need to use Embedded C language
instead of our conventional C language.

The key differences between conventional C and Embedded C are

 Embedded C has certain predefined variables for registers, ports etc. which are in
8051 e.g. ACC, P1, P2, TMOD etc.

 We can run super loop (infinite loop) in embedded C language.

We know that the programming in C language is solely done by dealing with different
variables.

In case of Embedded C, these variables are nothing else but the memory locations of
different memories of the microcontroller like code memory(ROM), data memory (RAM),
external memory etc. To use these memory locations as variables, we need to use data types.

Data types

There are 7 different data types in embedded C for 8051…

1) unsigned char
This data type is used to define an unsigned 8-bit variable. All 8-bits of this variable
are used to specify data. Hence the range of this data type is (0)10 𝑡𝑜 (255)10 .

e.g. unsigned char count;
2) signed char

This data type is used to define a signed 8-bit variable. Here MSB of variable is used
to show sign (+/-) while rest 7 bits are used to specify the magnitude of the variable.
Hence the range of this data type is (−128)10 𝑡𝑜 (127) 10.

e.g. signed char temp;
3) unsigned int

This data type is used to define a 16-bit variable. Hence from this we can comment
that this data types combines any 2 memory locations of the data memory as one
variable. Here all 16 bits are used to specify data. So the range of this data type is
(0)10 𝑡𝑜 (65535)10.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 14

4) signed int
This data type is used to define a signed variable like signed char but of 16-bit size.
Hence its range is (−32768)10 𝑡𝑜 (32767)10

5) sfr
This is an 8-bit data type used for defining names of Special Function Registers
(SFR’s) that are located in RAM memory locations 80 H to FF H only.

e.g. sfr P0 = 0x80;
6) bit

This data type is used to access single bits from the bit-addressable area of RAM.
e.g. bit MYBIT = 0x32;

7) sbit
The sbit data type is the one which is used to define or rather access single bits of the
bit addressable SFR’s of 8051 microcontroller.

e.g. sbit En = P2^0;

Decision control structures

The decision control structures are used to decide whether to execute a particular block of
code depending on the condition specified.
™ Following are some decision control structures:

 if statement
 if…else statement

Loop statements

The loop statements are the one which are used when we want to execute a certain block of

code for more than one times either depending on situation or by a predefined number of

times.

™ Embedded C is basically having two loop statements:

if statement

if(condition)

{

statement-1; statement-2;

……..

}

if...else statement if(condition)

{

statement-1; statement-2;

………

}

else

{

statement n;

}

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 15

 for loop

 while loop

1) for loop

for loops are used to repeat any particular piece of code a predefined number of

times.

 ™for(initializations ; conditions ; updates)

 {

 statement-1;

 statement-2;

 ………

 }

2) while loop

while loop also has the provision to repeat a certain block of code but here the block is

repeated depending on the condition specified. The loop keeps on repeating until the

condition becomes false.

™ Format of while loop is:

 while(condition)

 {

 statement-1;

 statement- 2;

 ………

 }

Break & Continue Statements
1) break

The break statement, whenever is encountered in the loop, it forces the control to terminate the

loop in which it is written.

2) ™ continue

Whenever this statement is encountered in any loop, the statements in the loop after it won’t be

executed i.e. will be skipped and again control will be transferred to check the condition of the loop.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 16

Format of any C Program

#include <reg51.h> Header File

sbit <name>=<bit address>; sfr bit definitions

sfr <name>=<sfr address>; sfr definition

Data-type udf1(data-type var_name); User defined function

Data-type udf2(data-type var_name);

void main(void) main function

{

statement-1;

statement-2;

………………….;

Functions
Sometimes, there comes a situation in which in a program a group of statements is used

frequently. Writing these statements again & again makes our program clumsy to write as

well as it consumes more memory space. To overcome this problem there is a facility in C

language to define a function. In function we can write the particular group of statements

which is getting repeated continuously. Now anytime when we want to use that code group,

we just have to call the function and it’s done.

Types of functions

 No arguments, no return values

 With no arguments and a return value

 With arguments but no return value

 With arguments and return value

There are 3 ways to deal with a function:

 Define first, then use

 Do prototyping (i.e. Define first, use after main())

 Do prototyping in header file

a) Define first, then use

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 17

In this case, before writing the main function, we define the user-defined

function and then use it in main() function whenever required.

b) Do prototyping and define after main function

In this case the function name, data type and argument data type are specified

before writing main function to declare that we’ll later implement this

function.

c) Do prototyping in header file

In this case, define the function in a (user defined) header file and then just

include that header file in your program.

Data Types in Embedded C

Delay generation in 8051

The delay length in 8051 microcontroller depends on three factors:

 The crystal frequency

 the number of clock per machine

 the C compiler.

The original 8051 used 1/12 of the crystal oscillator frequency as one machine cycle. In

other words, each machine cycle is equal to 12 clocks period of the crystal frequency

connected to X1-X2 pins of 8051. To speed up the 8051, many recent versions of the 8051

have reduced the number of clocks per machine cycle from 12 to four, or even one. The

frequency for the timer is always 1/12th the frequency of the crystal attached to the 8051,

regardless of the 8051 version. In other words, AT89C51, DS5000, and DS89C4x0 the

duration of the time to execute an instruction varies, but they all use 1/12th of the crystal's

oscillator frequency for the clock source.

8051 has two different ways to generate time delay using C programming, regardless of

8051 version.

The first method is simply using Loop program function in which Delay() function is

made or by providing for(); delay loop in Embedded C programming. You can define your

own value of delay and how long you want to display. For example- for(i=0;i<"any decimal

value";i++); this is the delay for loop used in embedded C.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 18

Code to generate 250 ms delay on Port P1 of 8051:

 #include "REG52.h"

 void MSDelay(unsigned int);

 void main(void)

{
 while (1) //repeat forever
 {
 P1=0x55;
 MSDelay(250);
 P1=0xAA;
 MSDelay(250);
 }
 }
 void MSDelay(unsigned int itime)
 {
 unsigned int i,j;

 for (i=0;i<itime;i++) // this is For(); loop delay used to define delay value in
 Embedded C

 {
 for (j=0;j<1275;j++);
 }
 }
The second method is using Timer registers TH, TL and TMOD that are accessible in

embedded C by defining header file reg52.h Both timers 0 and 1 use the same register,

called TMOD (timer mode), to set the various timer operation modes in 8051 C

programming. There are four operating modes of timer 0 and 1.

To generate Time delay using timer registers:

 Load the TMOD value register indicating which timer (timer 0 or timer 1) is to be

used and which timer mode (0 or is selected

 Load registers TL and TH with initial count value

 Start the timer

 Keep monitoring the timer flag (TF) until it rolls over from FFFFH to 0000.

 After the timer reaches its limit and rolls over, in order to repeat the process - TH and

TL must be reloaded with the original value, and TR is turned off by setting value to 0

and TF must be reloaded to 0.

http://www.justsharehere.com/archives/4652#timer
http://www.justsharehere.com/archives/4652#timer

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 19

Code generating delay using timer register:

 #include <REG52.h>
 void T0Delay(void);
 void main(void){

 while (1)
 {
 P1=0x55;
 T0Delay();
 P1=0xAA;

 T0Delay ();
 }
 }

 void T0Delay()
 {
 TMOD=0x01; // timer 0, mode 1
 TL0=0x00; // load TL0
 TH0=0x35; // load TH0
 TR0=1; // turn on Timer0
 while (TF0==0); // wait for TF0 to roll over
 TR0=0; // turn off timer
 TF0=0; // clear TF0
 }

Port programming

1. Write an 8051 C program to send values 00 – FF to port P1.

#include <reg51.h>

 void main(void)

{

unsigned char i; for (i=0;i<=255;i++)

P1=i;

}

2. Write an 8051 C program to send hex values for ASCII characters of 0, 1, 2, 3, 4, 5, A, B, C,

and D to port P1

#include <reg51.h>

 void main(void)

{

unsigned char mynum()=“012345ABCD”;

unsigned char i;

for (i=0;i<=10;i++)

 P1=mynum(i);

}

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 20

3. Write an 8051 C program to toggle all the bits of P1 continuously.

#include <reg51.h> void main(void)

{

While (1)

{

p1=0x55;

p1=0xAA;

}

}

4. Write an 8051 C program to send values of –4 to +4 to port P1.

//Singed numbers

 #include <reg51.h>

void main(void)

{

char mynum[]={+1,-1,+2,-2,+3,-3,+4,-4};

unsigned char i; for (i=0;i<=8;i++)

P1=mynum[i];

}

5. Write an 8051 C program to send values of –4 to +4 to port P1

//Singed numbers

 #include <reg51.h>

 void main(void)

{

signed char i;

for (i=-4;i<=4;i++)

P1=mynum[i];

}

6. Write an 8051 C program to toggle bit D0 of the port P1 (P1.0) 50,000 times.

#include <reg51.h>

sbit MYBIT=P1^0;

void main(void)

{

unsigned int z;

for (z=0;z<=50000;z++)

{

MYBIT=0;

MYBIT=1;

}

}

Note: sbit keyword allows access to the single bits of the SFR registers

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 21

7. LEDs are connected to bits P1 and P2. Write an 8051 C program that shows the count

from 0 to FFH (0000 0000 to 1111 1111 in binary) on the LEDs.

#include <reg51.h>

#define LED P2;

void main(void)

{

P1=00; //clear P1

 LED=0; //clear P2

while(1)

{

P1++; //increment P1

 LED++; //increment P2

}

}

Note: Ports P0 – P3 are byte-accessable and we can use the P0 – P3 labels as defined in the

8051 header file <reg51.h>

8. Write an 8051 C program to get a byte of data form P1, wait 1/2 second, and then send it to P2.

#include <reg51.h>

void MSDelay(unsigned int);

void main(void)

{

unsigned char mybyte;

P1=0xFF; //make P1 input port

while (1)

{

mybyte=P1; //get a byte from P1

MSDelay(500);

P2=mybyte; //send it to P2

}

}

9. Write an 8051 C program to get a byte of data form P0. If it is less than 100, send it to P1;

otherwise, send it to P2.

#include <reg51.h>

void main(void)

{

unsigned char mybyte;

P0=0xFF; //make P0 input port

while (1)

{

mybyte=P0; //get a byte from P0

if (mybyte<100)

P1=mybyte; //send it to P1

void MSDelay(unsigned int itime)

{

unsigned int i,j;

for (i=0;i<itime;i++)

for (j=0;j<1275;j++);

}

void MSDelay(unsigned int itime)

{

unsigned int i,j;

for (i=0;i<itime;i++) for

(j=0;j<1275;j++);

}

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 22

else

P2=mybyte; //send it to P2

}

}

10. Write an 8051 C program to toggle only bit P2.4 continuously without disturbing the rest of the

bits of P2

//Toggling an individual bit

#include <reg51.h>

sbit mybit=P2^4;

void main(void)

{

while (1)

{

mybit=1; //turn on P2.4

mybit=0; //turn off P2.4

}

}

Note:

 Ports P0 – P3 are bit-addressable and we use sbit data type to access a single

bit of P0 - P3

 Use the Px^y format, where x is the port 0, 1, 2, or 3 and y is the bit 0 – 7 of

that port

11. Write an 8051 C program to monitor bit P1.5. If it is high, send 55H to P0; otherwise, send AAH

to P2

#include <reg51.h>

sbit mybit=P1^5;

 void main(void)

{

mybit=1; //make mybit an input

while (1)

{

if (mybit==1)

P0=0x55;

else

P2=0xAA;

}

}

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 23

12. A door sensor is connected to the P1.1 pin, and a buzzer is connected to P1.7. Write an

8051 C program to monitor the door sensor, and when it opens, sound the buzzer. You can

sound the buzzer by sending a square wave of a few hundred Hz.

#include <reg51.h>

void MSDelay(unsigned int);

sbit Dsensor=P1^1;

sbit Buzzer=P1^7;

void main(void)

{

Dsensor=1; //make P1.1 an input

while (1)

{

while (Dsensor==1)//while it opens

{

Buzzer=0; MSDelay(200);

 Buzzer=1; MSDelay(200);

}

}

}

13. Write an 8051 C program to toggle all the bits of P0, P1, and P2 continuously with a 250 ms

delay. Use the sfr keyword to declare the port addresses

sfr P0=0x80;

sfr P1=0x90;

sfr P2=0xA0;

void MSDelay(unsigned int);

void main(void)

{

while (1)

{

P0=0x55;

P1=0x55;

P2=0x55;

MSDelay(250);

P0=0xAA;

P1=0xAA;

P2=0xAA;

MSDelay(250);

}

}

void MSDelay(unsigned int itime)

{

unsigned int i,j;

for (i=0;i<itime;i++) for

(j=0;j<1275;j++);

}

void MSDelay(unsigned int itime)

{

unsigned int i,j;

for (i=0;i<itime;i++) for

(j=0;j<1275;j++);

}

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 24

14. The data pins of an LCD are connected to P1. The information is latched into the LCD

whenever its Enable pin goes from high to low. Write an 8051 C program to send “ECED-

SVNIT” to this LCD

#include <reg51.h>

#define LCDData P1 //LCDData declaration

sbit En=P2^0; //the enable pin void main(void)

{

unsigned char message[] =“ECED-SVNIT”;

unsigned char z;

for (z=0;z<10;z++) //send 10 characters

{

LCDData=message[z];

En=1; //a high-

En=0; //-to-low pulse to latch data

}

}

15. Write an 8051 C program to turn bit P1.5 on and off 50,000 times.

#include <reg51.h>

sbit MYBIT=0x95;

void main(void)

{

unsigned int z;

for (z=0;z<50000;z++)

{ MYBIT=1; MYBIT=0;

}

}

Note

 We can access a single bit of any SFR if we specify the bit address

Code Conversion Programs

1. Write an 8051 C program to convert packed BCD 0x29 to ASCII and display the bytes

on P1 and P2.

#include <reg51.h>

void main(void)

{

unsigned char x,y,z;

unsigned char mybyte=0x29;

x=mybyte&0x0F;

P1=x|0x30;

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 25

y=mybyte&0xF0;

y=y>>4;

P2=y|0x30;

}

2. Write an 8051 C program to convert ASCII digits of ‘4’ and ‘7’ to packed BCD and display

them on P1.

#include <reg51.h>

void main(void)

{

unsigned char bcdbyte;

 unsigned char w=‘4’;

 unsigned char z=‘7’;

w=w&0x0F;

w=w<<4;

z=z&0x0F;

bcdbyte=w|z;

P1=bcdbyte;

}

3. Write an 8051 C program to calculate the checksum byte for the data 25H, 62H, 3FH, and

52H.

#include <reg51.h>

void main(void)

{

unsigned char mydata[]={0x25,0x62,0x3F,0x52};

 unsigned char sum=0;

unsigned char x;

unsigned char chksumbyte; for (x=0;x<4;x++)

{

P2=mydata[x];

sum=sum+mydata[x];

}

chksumbyte=~sum+1;

P2=chksumbyte;

}

4. Write an 8051 C program to perform the checksum operation to ensure data integrity. If data is

good, send ASCII character ‘G’ to P0. Otherwise send ‘B’ to P0.

#include <reg51.h>

void main(void)

{

unsigned char mydata[]={0x25,0x62,0x3F,0x52,0xE8};

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 26

unsigned char chksum=0;

unsigned char x;

for (x=0;x<5;x++) chksum=chksum + mydata[x];

if (chksum==0)

P0=‘G’;

else

P0=‘B’;

}

5. Write an 8051 C program to convert 11111101 (FD hex) to decimal and display the digits

on P0, P1 and P2.

#include <reg51.h>

void main(void)

{

unsigned char x,binbyte,d1,d2,d3;

binbyte=0xFD;

 x=binbyte/10;

d1=binbyte%10;

d2=x%10;

d3=x/10;

P0=d1;

P1=d2;

P2=d3;

}

INTERFACING THE KEYBOARD TO 8051 MICROCONTROLLER

The key board here we are interfacing is a matrix keyboard. This key board is designed with

a particular rows and columns. These rows and columns are connected to the

microcontroller through its ports of the micro controller 8051. We normally use 8*8 matrix

key board. So only two ports of 8051 can be easily connected to the rows and columns of the

key board.

 When ever a key is pressed, a row and a column gets shorted through that pressed key

and all the other keys are left open. When a key is pressed only a bit in the port goes

high. Which indicates microcontroller that the key is pressed. By this high on the bit key in

the corresponding column is identified.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 27

 Once we are sure that one of key in the key board is pressed next our aim is to identify

that key. To do this we firstly check for particular row and then we check the corresponding

column the key board.

 To check the row of the pressed key in the keyboard, one of the row is made high by

making one of bit in the output port of 8051 high . This is done until the row is found

out. Once we get the row next out job is to find out the column of the pressed key. The

column is detected by contents in the input ports with the help of a counter. The content of

the input port is rotated with carry until the carry bit is set.

 The contents of the counter is then compared and displayed in the display. This display

is designed using a seven segment display and a BCD to seven segment decoder IC 7447.

 The BCD equivalent number of counter is sent through output part of 8051 displays the

number of pressed key.

Circuit diagram of INTERFACING KEY BOARD TO 8051.

The programming algorithm, program and the circuit diagram is as follows. Here program is
explained with comments.

KEY PAD
MICRO

CONTROLLER
DISPLAY

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 28

 The 8051 has 4 I/O ports P0 to P3 each with 8 I/O pins, P0.0 to P0.7,P1.0 to P1.7, P2.0
to P2.7, P3.0 to P3.7. The one of the port P1 (it understood that P1 means P1.0 to
P1.7) as an I/P port for microcontroller 8051, port P0 as an O/P port of
microcontroller 8051 and port P2 is used for displaying the number of pressed key.

 Make all rows of port P0 high so that it gives high signal when key is pressed.
 See if any key is pressed by scanning the port P1 by checking all columns for non

zero condition.
 If any key is pressed, to identify which key is pressed make one row high at a time.
 Initiate a counter to hold the count so that each key is counted.
 Check port P1 for nonzero condition. If any nonzero number is there in

[accumulator], start column scanning by following step 9.
 Otherwise make next row high in port P1.
 Add a count of 08h to the counter to move to the next row by repeating steps from

step 6.
 If any key pressed is found, the [accumulator] content is rotated right through the

carry until carry bit sets, while doing this increment the count in the counter till carry
is found.

 Move the content in the counter to display in data field or to memory location
 To repeat the procedures go to step 2.

Start of main program:

to check that whether any key is pressed

 start: mov a,#00h
 mov p1,a ;making all rows of port p1 zero
 mov a,#0fh
 mov p1,a ;making all rows of port p1 high
 press: mov a,p2
 jz press ;check until any key is pressed

after making sure that any key is pressed

 mov a,#01h ;make one row high at a time
 mov r4,a
 mov r3,#00h ;initiating counter
 next: mov a,r4
 mov p1,a ;making one row high at a time
 mov a,p2 ;taking input from port A
 jnz colscan ;after getting the row jump to check
 column
 mov a,r4
 rl a ;rotate left to check next row
 mov r4,a
 mov a,r3
 add a,#08h ;increment counter by 08 count
 mov r3,a
 sjmp next ;jump to check next row

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 29

after identifying the row to check the column following steps are followed

 colscan: mov r5,#00h
 in: rrc a ;rotate right with carry until get the carry
 jc out ;jump on getting carry
 inc r3 ;increment one count
 jmp in
 out: mov a,r3
 da a ;decimal adjust the contents of counter
 before display
 mov p2,a
 jmp start ;repeat for check next key.

INTERFACING DAC TO 8051

The Digital to Analog converter (DAC) is a device, that is widely used for converting digital
pulses to analog signals. There are two methods of converting digital signals to analog
signals. These two methods are binary weighted method and R/2R ladder method. In this
article we will use the MC1408 (DAC0808) Digital to Analog Converter. This chip uses R/2R
ladder method. This method can achieve a much higher degree of precision. DACs are judged
by its resolution. The resolution is a function of the number of binary inputs. The most
common input counts are 8, 10, 12 etc. Number of data inputs decides the resolution of DAC.
So if there are n digital input pin, there are 2n analog levels. So 8 input DAC has 256 discrete
voltage levels.

The MC1408 DAC (or DAC0808)

In this chip the digital inputs are converted to current. The output current is known as Iout by
connecting a resistor to the output to convert into voltage. The total current provided by
the Iout pin is basically a function of the binary numbers at the input pins D0 - D7 (D0 is the
LSB and D7 is the MSB) of DAC0808 and the reference current Iref. The following formula is
showing the function of Iout

 (

)

The Iref is the input current. This must be provided into the pin 14. Generally 2.0mA is used
as Iref

We connect the Iout pin to the resistor to convert the current to voltage. But in real life it may
cause inaccuracy since the input resistance of the load will also affect the output voltage. So
practically Iref current input is isolated by connecting it to an Op-Amp with Rf = 5KΩ as
feedback resistor. The feedback resistor value can be changed as per requirement.

Generating Sinewave using DAC and 8051 Microcontroller

For generating sinewave, at first we need a look-up table to represent the magnitude of the
sine value of angles between 0° to 360°. The sine function varies from -1 to +1. In the table
only integer values are applicable for DAC input. In this example we will consider 30°
increments and calculate the values from degree to DAC input. We are assuming full-scale
voltage of 10V for DAC output. We can follow this formula to get the voltage ranges.

Vout = 5V + (5 ×sinθ)

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 30

Let us see the lookup table according to the angle and other parameters for DAC.

Angle(in θ) sinθ Vout (Voltage

Magnitude)

Values sent to DAC

0 0 5 128

30 0.5 7.5 192

60 0.866 9.33 238

90 1.0 10 255

120 0.866 9.33 238

150 0.5 7.5 192

180 0 5 128

210 -0.5 2.5 64

240 -0.866 0.669 17

270 -1.0 0 0

300 -0.866 0.669 17

330 -0.5 2.5 64

360 0 5 128

Circuit Diagram −

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 31

Program

#include<reg51.h>

sfr DAC = 0x80; //Port P0 address

void main(){

 int sin_value[12] = {128,192,238,255,238,192,128,64,17,0,17,64};

 int i;

 while(1){

 //infinite loop for LED blinking

 for(i = 0; i<12; i++){

 DAC = sin_value[i];

 }

 }

}

INTERFACING ADC TO 8051

ADC is the Analog to Digital converter, which converts analog data into digital format;
usually it is used to convert analog voltage into digital format. Analog signal has infinite no
of values like a sine wave or our speech, ADC converts them into particular levels or states,
which can be measured in numbers as a physical quantity. Instead of continuous conversion,
ADC converts data periodically, which is usually known as sampling rate. Telephone
modem is one of the examples of ADC, which is used for internet, it converts analog data
into digital data, so that computer can understand, because computer can only understand
Digital data. The major advantage, of using ADC is that, we noise can be efficiently eliminated
from the original signal and digital signal can travel more efficiently than analog one. That’s
the reason that digital audio is very clear, while listening.

In present time there are lots of microcontrollers in market which has inbuilt ADC with one
or more channels. And by using their ADC register we can interface. When we select 8051
microcontroller family for making any project, in which we need of an ADC conversion,
then we use external ADC. Some external ADC chips are 0803,0804,0808,0809 and there
are many more. Today we are going to interface 8-channel ADC with AT89s52
Microcontroller namely ADC0808/0809.

ADC0808/0809 is a monolithic CMOS device and microprocessor compatible control logic
and has 28 pin which gives 8-bit value in output and 8- channel ADC input pins (IN0-IN7). Its

http://circuitdigest.com/microcontroller-projects/arduino-uno-adc-tutorial

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 32

resolution is 8 so it can encode the analog data into one of the 256 levels (28). This device
has three channel address line namely: ADDA, ADDB and ADDC for selecting channel. Below
is the Pin Diagram for ADC0808:

ADC0808/0809 requires a clock pulse for conversion. We can provide it by using oscillator
or by using microcontroller. In this project we have applied frequency by using
microcontroller.

We can select the any input channel by using the Address lines, like we can select the input
line IN0 by keeping all three address lines (ADDA, ADDB and ADDC) Low. If we want to
select input channel IN2 then we need to keep ADDA, ADDB low and ADDC high. For
selecting all the other input channels, have a look on the given table:

ADC Channel Name ADDC PIN ADDB PIN ADDA PIN

IN0 LOW LOW LOW

IN1 LOW LOW HIGH

IN2 LOW HIGH LOW

IN3 LOW HIGH HIGH

IN4 HIGH LOW LOW

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 33

IN5 HIGH LOW HIGH

IN6 HIGH HIGH LOW

IN7 HIGH HIGH HIGH

Circuit Description:

Circuit of “Interfacing ADC0808 with 8051” is little complex which contains more
connecting wire for connecting device to each other. In this circuit we have mainly used
AT89s52 as 8051 microcontroller, ADC0808, Potentiometer and LCD.

A 16x2 LCD is connected with 89s52 microcontroller in 4-bit mode. Control pin RS, RW and
En are directly connected to pin P2.0, GND and P2.2. And data pin D4-D7 is connected to
pins P2.4, P2.5, P2.6 and P2.7 of 89s52. ADC0808 output pin are directly connected to port
P1 of AT89s52. Address line pins ADDA, ADDB, AADC are connected at P3.0, P3.1, and P3.2.

ALE (Address latch enable), SC (Start conversion), EOC (End of conversion), OE (Output
enable) and clock pins are connected at P3.3, P3.4, P3.5, P3.6 and P3.7.

And here we have used three potentiometers connected at pin 26, 27, and 28 of ADC0808.

A 9 volt battery and a 5 volt voltage regulator namely 7805 are used for powering the
circuit.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 34

Working:

In this project we have interfaced three channels of ADC0808. And for demonstration we
have used three variable resistors. When we power the circuit then microcontroller
initialize the LCD by using appropriate command, gives clock to ADC chip, selects ADC
channel by using address line and send start conversion signal to ADC. After this ADC first
reads selected ADC channel input and gives its converted output to microcontroller. Then
microcontroller shows its value at Ch1 position in LCD. And then microcontroller changes
ADC channel by using address line. And then ADC reads selected channel and send output to
microcontroller. And show on LCD as name Ch2. And like wise for other channels.

Working of ADC0808 is much similar to working of ADC0804. In this, first microcontroller
provides a 500 KHz clock signal to ADC0808, using the Timer 0 interrupt, as ADC requires
clock signal to operate. Now microcontroller sends a LOW to HIGH level signal to ALE pin
(its active-high pin) of ADC0808 to enable the latch in the address. Then by applying HIGH to
LOW Level signal to SC (Start Conversion), ADC starts analog to digital conversion. And then
wait for the EOC (End of Conversion) pin to go LOW. When EOC goes LOW, it means analog
to digital conversion has been completed and data is ready to use. After this, microcontroller
enables the output line by applying a HIGH to LOW signal to OE pin of ADC0808.

ADC0808 gives ratio metric conversion output at its output pins. And the formula for
radiometric conversion is given by:

Vin/(Vfs-Vz)= Dx/(Dmax-Dmin)

Where

Vin is input voltage for conversion
Vfs is full scale Voltage
Vz is zero voltage
Dx is data point being measure

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 35

Dmax is Maximum data limit
Dmin is Minimum data limit

Program

In the program, first of all we include header file sand defines variable and input & output

pins for ADC and LCD.

include<reg51.h>

#include<stdio.h>

sbit ale=P3^3;

sbit oe=P3^6;

sbit sc=P3^4;

sbit eoc=P3^5;

sbit clk=P3^7;

sbit ADDA=P3^0; //Address pins for selecting input channels.

sbit ADDB=P3^1;

sbit ADDC=P3^2;

#define lcdport P2 //lcd

sbit rs=P2^0;

sbit rw=P2^2;

sbit en=P2^1;

#define input_port P1 //ADC

int result[3],number;

Function for creating the delay has been created (void delay), along with some LCD

functions like for LCD initialization, printing the string, for LCD commands etc. You can

easily find them in Code. Check this article for LCD interfacing with 8051 and its functions.

After this in main program we have initialize LCD and set the EOC, ALE, EO, SC pins

accordingly.

void main()

{

 int i=0;

 eoc=1;

 ale=0;

 oe=0;

 sc=0;

 TMOD=0x02;

 TH0=0xFD;

lcd_ini();

lcdprint("ADC 0808/0809 ");

And then program reads the ADC and stores ADC output in a variable and then sends it to

LCD after decimal to ASCII conversion, using void read_adc() and void adc(int i) functions:

void read_adc()

http://circuitdigest.com/microcontroller-projects/lcd-interfacing-with-8051-microcontroller-89s52

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 36

{

 number=0;

 ale=1;

 sc=1;

 delay(1);

 ale=0;

 sc=0;

 while(eoc==1);

 while(eoc==0);

 oe=1;

 number=input_port;

 delay(1);

 oe=0;

}

void adc(int i)

{

switch(i)

 {

 case 0:

 ADDC=0;

 ADDB=0;

 ADDA=0;

 lcdcmd(0xc0);

 read_adc();

Full Program

include<reg51.h>

#include<stdio.h>

sbit ale=P3^3;

sbit oe=P3^6;

sbit sc=P3^4;

sbit eoc=P3^5;

sbit clk=P3^7;

sbit ADDA=P3^0; //Address pins for selecting input channels.

sbit ADDB=P3^1;

sbit ADDC=P3^2;

#define lcdport P2 //lcd

sbit rs=P2^0;

sbit rw=P2^2;

sbit en=P2^1;

#define input_port P1 //ADC

int result[3],number;

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 37

void timer0() interrupt 1 // Function to generate clock of frequency 500KHZ

using Timer 0 interrupt.

{

clk=~clk;

}

void delay(unsigned int count)

{

int i,j;

for(i=0;i<count;i++)

 for(j=0;j<100;j++);

}

void daten()

{

 rs=1;

 rw=0;

 en=1;

 delay(1);

 en=0;

}

void lcd_data(unsigned char ch)

{

 lcdport=ch & 0xF0;

 daten();

 lcdport=ch<<4 & 0xF0;

 daten();

}

void cmden(void)

{

 rs=0;

 en=1;

 delay(1);

 en=0;

}

void lcdcmd(unsigned char ch)

{

 lcdport=ch & 0xf0;

 cmden();

 lcdport=ch<<4 & 0xF0;

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 38

 cmden();

}

lcdprint(unsigned char *str) //Function to send string data to LCD.

{

 while(*str)

 {

 lcd_data(*str);

 str++;

 }

}

void lcd_ini() //Function to inisialize the LCD

{

 lcdcmd(0x02);

 lcdcmd(0x28);

 lcdcmd(0x0e);

 lcdcmd(0x01);

}

void show()

{

 sprintf(result,"%d",number);

 lcdprint(result);

 lcdprint(" ");

}

void read_adc()

{

 number=0;

 ale=1;

 sc=1;

 delay(1);

 ale=0;

 sc=0;

 while(eoc==1);

 while(eoc==0);

 oe=1;

 number=input_port;

 delay(1);

 oe=0;

}

void adc(int i) //Function to drive ADC

{

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 39

switch(i)

 {

 case 0:

 ADDC=0; // Selecting input channel IN0 using address lines

 ADDB=0;

 ADDA=0;

 lcdcmd(0xc0);

 read_adc();

 show();

 break;

 case 1:

 ADDC=0; // Selecting input channel IN1 using address lines

 ADDB=0;

 ADDA=1;

 lcdcmd(0xc6);

 read_adc();

 show();

 break;

 case 2:

 ADDC=0; // Selecting input channel IN2 using address lines

 ADDB=1;

 ADDA=0;

 lcdcmd(0xcc);

 read_adc();

 show();

 break;

 }

}

void main()

{

 int i=0;

 eoc=1;

 ale=0;

 oe=0;

 sc=0;

 TMOD=0x02;

 TH0=0xFD;

lcd_ini();

lcdprint(" ADC 0808/0809 ");

lcdcmd(192);

lcdprint(" Interfacing ");

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 40

delay(500);

lcdcmd(1);

lcdprint("Circuit Digest ");

lcdcmd(192);

lcdprint("System Ready... ");

delay(500);

lcdcmd(1);

lcdprint("Ch1 Ch2 Ch3 ");

 IE=0x82;

 TR0=1;

while(1)

{

 for(i=0;i<3;i++)

 {

 adc(i);

 number=0;

 }

}

}

STEPPER MOTOR INTERFACING WITH 8051

Stepper motors are used to translate electrical pulses into mechanical movements. In some

disk drives, dot matrix printers, and some other different places the stepper motors are

used. The main advantage of using the stepper motor is the position control. Stepper motors

generally have a permanent magnet shaft (rotor), and it is surrounded by a stator.

Normal motor shafts can move freely but the stepper motor shafts move in fixed repeatable
increments.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 41

Some parameters of stepper motors −

 Step Angle − The step angle is the angle in which the rotor moves when one pulse is
applied as an input of the stator. This parameter is used to determine the positioning
of a stepper motor.

 Steps per Revolution − This is the number of step angles required for a complete
revolution. So the formula is 360° /Step Angle.

 Steps per Second − This parameter is used to measure a number of steps covered in
each second.

 RPM − The RPM is the Revolution Per Minute. It measures the frequency of rotation.
By this parameter, we can measure the number of rotations in one minute.

Interfacing Stepper Motor with 8051 Microcontroller

Weare using Port P0 of 8051 for connecting the stepper motor. HereULN2003 is used. This
is basically a high voltage, high current Darlington transistor array. Each ULN2003 has seven
NPN Darlington pairs. It can provide high voltage output with common cathode clamp
diodes for switching inductive loads.

The Unipolar stepper motor works in three modes.

 Wave Drive Mode − In this mode, one coil is energized at a time. So all four coils are
energized one after another. This mode produces less torque than full step drive
mode.

The following table is showing the sequence of input states in different windings.

Steps Winding A Winding B Winding C Winding D

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

 Full Drive Mode − In this mode, two coils are energized at the same time. This mode
produces more torque. Here the power consumption is also high

The following table is showing the sequence of input states in different windings.

Steps Winding A Winding B Winding C Winding D

1 1 1 0 0

2 0 1 1 0

3 0 0 1 1

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 42

Steps Winding A Winding B Winding C Winding D

4 1 0 0 1

 Half Drive Mode − In this mode, one and two coils are energized alternately. At first,
one coil is energized then two coils are energized. This is basically a combination of
wave and full drive mode. It increases the angular rotation of the motor

The following table is showing the sequence of input states in different windings.

Steps Winding A Winding B Winding C Winding D

1 1 0 0 0

2 1 1 0 0

3 0 1 0 0

4 0 1 1 0

5 0 0 1 0

6 0 0 1 1

7 0 0 0 1

8 1 0 0 1

Program

#include<reg51.h>

sbit LED_pin = P2^0; //set the LED pin as P2.0

void delay(int ms){

 unsigned int i, j;

 for(i = 0; i<ms; i++){ // Outer for loop for given milliseconds value

 for(j = 0; j< 1275; j++){

 //execute in each milliseconds;

 }

 }

}

void main(){

 int rot_angle[] = {0x0C,0x06,0x03,0x09};

 int i;

 while(1){

 //infinite loop for LED blinking

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 43

 for(i = 0; i<4; i++){

 P0 = rot_angle[i];

 delay(100);

 }

 }

}

The circuit diagram is shown below: It uses the full drive mode.

LCD INTERFACING WITH 8051 MICROCONTROLLER

Display units are the most important output devices in embedded projects and electronics

products. 16x2 LCD is one of the most used display unit. 16x2 LCD means that there are two

rows in which 16 characters can be displayed per line, and each character takes 5X7 matrix

space on LCD. In this tutorial we are going to connect 16X2 LCD module to the 8051

microcontroller (AT89S52). Interfacing LCD with 8051 microcontroller might look quite

complex to newbies, but after understanding the concept it would look very simple and easy.

Although it may be time taking because you need to understand and connect 16 pins of LCD

to the microcontroller. So first let's understand the 16 pins of LCD module.

We can divide it in five categories, Power Pins, contrast pin, Control Pins, Data pins and

Backlight pins.

https://circuitdigest.com/microcontroller-projects/lcd-interfacing-with-8051-microcontroller-89s52
http://circuitdigest.com/article/16x2-lcd-display-module-pinout-datasheet

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 44

Category
Pin

NO.

Pin

Name
Function

Power Pins

1 VSS Ground Pin, connected to Ground

2
VDD or

Vcc
Voltage Pin +5V

Contrast

Pin
3

V0 or

VEE

Contrast Setting, connected to Vcc thorough a

variable resistor.

Control

Pins

4 RS
Register Select Pin, RS=0 Command

mode, RS=1 Data mode

5 RW
Read/ Write pin, RW=0 Write mode, RW=1

Read mode

6 E
Enable, a high to low pulse need to enable the

LCD

Data Pins 7-14 D0-D7
Data Pins, Stores the Data to be displayed on

LCD or the command instructions

Backlight

Pins

15
LED+ or

A
To power the Backlight +5V

16
LED- or

K
Backlight Ground

All the pins are clearly understandable by their name and functions, except the control pins,
so they are explained below:

RS: RS is the register select pin. We need to set it to 1, if we are sending some data to be
displayed on LCD. And we will set it to 0 if we are sending some command instruction like
clear the screen (hex code 01).

RW: This is Read/write pin, we will set it to 0, if we are going to write some data on LCD.
And set it to 1, if we are reading from LCD module. Generally this is set to 0, because we do
not have need to read data from LCD. Only one instruction “Get LCD status”, need to be read
some times.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 45

E: This pin is used to enable the module when a high to low pulse is given to it. A pulse of
450 ns should be given. That transition from HIGH to LOW makes the module ENABLE.

There are some preset command instructions in LCD, we have used them in our program
below to prepare the LCD (in lcd_init() function). Some important command instructions are
given below:

Hex Code Command to LCD Instruction Register

0F LCD ON, cursor ON

01 Clear display screen

02 Return home

04 Decrement cursor (shift cursor to left)

06 Increment cursor (shift cursor to right)

05 Shift display right

07 Shift display left

0E Display ON, cursor blinking

80 Force cursor to beginning of first line

C0 Force cursor to beginning of second line

38 2 lines and 5×7 matrix

83 Cursor line 1 position 3

3C Activate second line

08 Display OFF, cursor OFF

C1 Jump to second line, position 1

OC Display ON, cursor OFF

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 46

C1 Jump to second line, position 1

C2 Jump to second line, position 2

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 47

Circuit diagram for LCD interfacing with 8051 microcontroller is shown in the above

figure. If you have basic understanding of 8051 then you must know about EA(PIN 31),

XTAL1 & XTAL2, RST pin(PIN 9), Vcc and Ground Pin of 8051 microcontroller. I have used

these Pins in above circuit.

So besides these above pins we have connected the data pins (D0-D7) of LCD to the Port 2

(P2_0 – P2_7) microcontroller. And control pins RS, RW and E to the pin 12,13,14 (pin 2,3,4

of port 3) of microcontroller respectively.

PIN 2(VDD) and PIN 15(Backlight supply) of LCD are connected to voltage (5v), and PIN 1

(VSS) and PIN 16(Backlight ground) are connected to ground.

Pin 3(V0) is connected to voltage (Vcc) through a variable resistor of 10k to adjust the

contrast of LCD. Middle leg of the variable resistor is connected to PIN 3 and other two legs

are connected to voltage supply and Ground.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 48

Program

// Program for LCD Interfacing with 8051 Microcontroller (AT89S52)

#include<reg51.h>

#define display_port P2 //Data pins connected to port 2 on microcontroller

sbit rs = P3^2; //RS pin connected to pin 2 of port 3

sbit rw = P3^3; // RW pin connected to pin 3 of port 3

sbit e = P3^4; //E pin connected to pin 4 of port 3

void msdelay(unsigned int time) // Function for creating delay in milliseconds.

{

 unsigned i,j ;

 for(i=0;i<time;i++)

 for(j=0;j<1275;j++);

}

void lcd_cmd(unsigned char command) //Function to send command instruction to LCD

{

 display_port = command;

 rs= 0;

 rw=0;

 e=1;

 msdelay(1);

 e=0;

}

void lcd_data(unsigned char disp_data) //Function to send display data to LCD

{

 display_port = disp_data;

 rs= 1;

 rw=0;

 e=1;

 msdelay(1);

 e=0;

}

 void lcd_init() //Function to prepare the LCD and get it ready

{

 lcd_cmd(0x38); // for using 2 lines and 5X7 matrix of LCD

 msdelay(10);

 lcd_cmd(0x0F); // turn display ON, cursor blinking

 msdelay(10);

 lcd_cmd(0x01); //clear screen

 msdelay(10);

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE, NCERC,Pampady | 49

 lcd_cmd(0x81); // bring cursor to position 1 of line 1

 msdelay(10);

}

void main()

{

 unsigned char a[15]="CIRCUIT DIGEST"; //string of 14 characters with a null terminator.

 int l=0;

 lcd_init();

 while(a[l] != '\0') // searching the null terminator in the sentence

 {

 lcd_data(a[l]);

 l++;

 msdelay(50);

 }

}

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 1

MODULE IV

ADVANCED CONCEPTS

TIMERS AND COUNTERS

Timers/Counters are used generally for

 Time reference

 Creating delay

 Wave form properties measurement

 Periodic interrupt generation

 Waveform generation

8051 has two timers, Timer 0 and Timer 1.

Timer in 8051 is used as timer, counter and baud rate generator. Timer always counts up

irrespective of whether it is used as timer, counter, or baud rate generator: Timer is always

incremented by the microcontroller. The time taken to count one digit up is based on master clock

frequency.
If Master CLK=12 MHz,

Timer Clock frequency = Master CLK/12 = 1 MHz

Timer Clock Period = 1micro second

This indicates that one increment in count will take 1 micro second.

The two timers in 8051 share two SFRs (TMOD and TCON) which control the timers, and each timer

also has two SFRs dedicated solely to itself (TH0/TL0 and TH1/TL1).

The following are timer related SFRs in 8051.

 SFR Name Description SFR Address

TH0 Timer 0 High Byte 8Ch

TL0 Timer 0 Low Byte 8Ah

TH1 Timer 1 High Byte 8Dh

TL1 Timer 1 Low Byte 8Bh

TCON Timer Control 88h

TMOD Timer Mode 89h

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 2

TMOD Register

8051 timers have both software and hardware controls. The start and stop of a timer is controlled
by software using the instruction SETB TR1 and CLR TR1 for timer 1, and SETB TR0 and CLR
TR0 for timer 0.

The SETB instruction is used to start it and it is stopped by the CLR instruction. These instructions
start and stop the timers as long as GATE = 0 in the TMOD register. Timers can be started and
stopped by an external source by making GATE = 1 in the TMOD register.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 3

TCON Register

Timer/ Counter Control Logic.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 4 |

TIMER MODES

Timers can operate in four different modes. They are as follows

Timer Mode-0: In this mode, the timer is used as a 13-bit UP counter as follows.

Fig. Operation of Timer on Mode-0

The lower 5 bits of TLX and 8 bits of THX are used for the 13 bit count.Upper 3 bits of TLX

are ignored. When the counter rolls over from all 0's to all 1's, TFX flag is set and an

interrupt is generated. The input pulse is obtained from the previous stage. If TR1/0 bit is

1 and Gate bit is 0, the counter continues counting up. If TR1/0 bit is 1 and Gate bit is 1, then

the operation of the counter is controlled by input. This mode is useful to measure the width

of a given pulse fed to input.

Timer Mode-1: This mode is similar to mode-0 except for the fact that the Timer operates in

16-bit mode.

Fig: Operation of Timer in Mode 1

Timer Mode-2: (Auto-Reload Mode): This is a 8 bit counter/timer operation. Counting is

performed in TLX while THX stores a constant value. In this mode when the timer overflows

i.e. TLX becomes FFH, it is fed with the value stored in THX. For example if we load THX

with 50H then the timer in mode 2 will count from 50H to FFH. After that 50H is again

reloaded. This mode is useful in applications like fixed time sampling.

Fig: Operation of Timer in Mode 2

Timer Mode-3: Timer 1 in mode-3 simply holds its count. The effect is same as setting

TR1=0. Timer0 in mode-3 establishes TL0 and TH0 as two separate counters.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 5 |

Transmitter Receiver

Transmitter Receiver

Receiver Transmitter

Fig: Operation of Timer in Mode 3

Control bits TR1 and TF1 are used by Timer-0 (higher 8 bits) (TH0) in Mode-3 while TR0 and

TF0 are available to Timer-0 lower 8 bits(TL0).

SERIAL COMMUNICATION.

DATA COMMUNICATION

The 8051 microcontroller is parallel device that transfers eight bits of data simultaneously over

eight data lines to parallel I/O devices. Parallel data transfer over a long is very expensive. Hence,

a serial communication is widely used in long distance communication. In serial data

communication, 8-bit data is converted to serial bits using a parallel in serial out shift register and

then it is transmitted over a single data line. The data byte is always transmitted with least

significant bit first.

BASICS OF SERIAL DATA COMMUNICATION,
Communication Links

1. Simplex communication link: In simplex transmission, the line is dedicated for

transmission. The transmitter sends and the receiver receives the data.

2. Half duplex communication link: In half duplex, the communication link can be used
for either transmission or reception. Data is transmitted in only one direction at a time.

3. Full duplex communication link: If the data is transmitted in both ways at the same time,

it is a full duplex i.e. transmission and reception can proceed simultaneously. This

communication link requires two wires for data, one for transmission and one for reception.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 6 |

Types of Serial communication:

Serial data communication uses two types of communication.

1. Synchronous serial data communication: In this transmitter and receiver are

synchronized. It uses a common clock to synchronize the receiver and the transmitter. First

the synch character is sent and then the data is transmitted. This format is generally used

for high speed transmission..

In Synchronous serial data communication a block of data is transmitted at a time

2. Asynchronous Serial data transmission: In this, different clock sources are used for

transmitter and receiver. In this mode, data is transmitted with start and stop bits. A

transmission begins with start bit, followed by data and then stop bit. For error checking

purpose parity bit is included just prior to stop bit. In Asynchronous serial data

communication a single byte is transmitted at a time.

Baud rate:

The rate at which the data is transmitted is called baud or transfer rate. The baud rate is the

reciprocal of the time to send one bit. In asynchronous transmission, baud rate is not equal

to number of bits per second. This is because; each byte is preceded by a start bit and

followed by parity and stop bit. For example, in synchronous transmission, if data is

transmitted with 9600 baud, it means that 9600 bits are transmitted in one second. For bit

transmission time = 1 second/ 9600 = 0.104 ms.

6.1.1. 8051 SERIAL COMMUNICATION

The 8051 supports a full duplex serial port.

Three special function registers support serial communication.

1. SBUF Register: Serial Buffer (SBUF) register is an 8-bit register. It has separate

SBUF registers for data transmission and for data reception. For a byte of data to be

transferred via the TXD line, it must be placed in SBUF register. Similarly, SBUF

holds the 8-bit data received by the RXD pin and read to accept the received data.

2. SCON register: The contents of the Serial Control (SCON) register are shown below.

This register contains mode selection bits, serial port interrupt bit (TI and RI) and

also the ninth data bit for transmission and reception (TB8 and RB8).

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 7 |

3. PCON register: The SMOD bit (bit 7) of PCON register controls the baud rate in

asynchronous mode transmission.

SERIAL COMMUNICATION MODES

1. Mode 0

In this mode serial port runs in synchronous mode. The data is transmitted and

received through RXD pin and TXD is used for clock output. In this mode the baud

rate is 1/12 of clock frequency.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 8 |

2. Mode 1

In this mode SBUF becomes a 10 bit full duplex transceiver. The ten bits are 1

start bit, 8 data bit and 1 stop bit. The interrupt flag TI/RI will be set once

transmission or reception is over. In this mode the baud rate is variable and is

determined by the timer 1 overflow rate.

Baud rate = [2smod/32] x Timer 1 overflow Rate

= [2smod/32] x [Oscillator Clock Frequency] / [12 x [256 – [TH1]]]

3. Mode 2

This is similar to mode 1 except 11 bits are transmitted or received. The 11 bits are,

1 start bit, 8 data bit, a programmable 9th data bit, 1 stop bit.

Baud rate = [2smod/64] x Oscillator Clock Frequency

4. Mode 3

This is similar to mode 2 except baud rate is calculated as in mode 1

CONNECTIONS TO RS-232

RS-232 standards:

To allow compatibility among data communication equipment made by various

manufactures, an interfacing standard called RS232 was set by the Electronics Industries

Association (EIA) in 1960. Since the standard was set long before the advent of logic family,

its input and output voltage levels are not TTL compatible.

In RS232, a logic one (1) is represented by -3 to -25V and referred as MARK while logic
zero

(0) is represented by +3 to +25V and referred as SPACE. For this reason to connect any

RS232 to a microcontroller system we must use voltage converters such as MAX232 to

convert the TTL logic level to RS232 voltage levels and vice-versa. MAX232 IC chips are

commonly referred as line drivers.

In RS232 standard we use two types of connectors. DB9 connector or DB25 connector.

DB9 Male Connector DB25 Male

Connector The pin description of DB9 and DB25 Connectors are as follows

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 9 |

The 8051 connection to MAX232 is as follows.

The 8051 has two pins that are used specifically for transferring and receiving data
serially. These two pins are called TXD, RXD. Pin 11 of the 8051 (P3.1) assigned to TXD
and pin 10 (P3.0) is designated as RXD. These pins TTL compatible; therefore they require
line driver (MAX 232) to make them RS232 compatible. MAX 232 converts RS232 voltage
levels to TTL voltage levels and vice versa. One advantage of the MAX232 is that it uses a
+5V power source which is the same as the source voltage for the 8051. The typical
connection diagram between MAX 232 and 8051 is shown below.

SERIAL COMMUNICATION PROGRAMMING IN ASSEMBLY AND C.

Steps to programming the 8051 to transfer data serially
1. The TMOD register is loaded with the value 20H, indicating the use of

the Timer 1 in mode 2 (8-bit auto reload) to set the baud rate.

2. The TH1 is loaded with one of the values in table 5.1 to set the baud

rate for serial data transfer.

3. The SCON register is loaded with the value 50H, indicating serial

mode 1, where an 8-bit data is framed with start and stop bits.

4. TR1 is set to 1 start timer 1.

5. TI is cleared by the “CLR TI” instruction.

6. The character byte to be transferred serially is written into the SBUF
register.

7. The TI flag bit is monitored with the use of the instruction JNB TI,

target to see if the character has been transferred completely.

8. To transfer the next character, go to step 5.

Example 1. Write a program for the 8051 to transfer letter ‘A’ serially at 4800- baud rate, 8 bit
data, 1 stop bit continuously.

ORG 0000H
LJMP START
ORG 0030H

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 10 |

START: MOV TMOD, #20H ; select timer 1 mode 2
 MOV TH1, #0FAH ; load count to get baud rate of 4800
 MOV SCON, #50H ; initialize UART in mode 2

; 8 bit data and 1 stop bit
 SETB TR1 ; start timer
AGAIN: MOV SBUF, #'A' ; load char ‘A’ in SBUF
BACK: JNB TI, BACK ; Check for transmit interrupt flag
 CLR TI ; Clear transmit interrupt flag
 SJMP AGAIN
 END

Example 2. Write a program for the 8051 to transfer the message ‘EARTH’ serially at 9600 baud, 8
bit data, 1 stop bit continuously.

ORG 0000H
LJMP START

ORG 0030H
START: MOV TMOD, #20H ; select timer 1 mode 2
MOV TH1, #0FDH ; load count to get reqd. baud rate of 9600
MOV SCON, #50H ; initialise uart in mode 2

; 8 bit data and 1 stop bit
SETB TR1 ; start timer
LOOP: MOV A, #'E' ; load 1st letter ‘E’ in
AACALL LOAD ; call load subroutine
 MOV A, #'A' ; load 2nd letter ‘A’ in A
ACALL LOAD ; call load subroutine
MOV A, #'R' ; load 3rd letter ‘R’ in A
ACALL LOAD ; call load subroutine
 MOV A, #'T' ; load 4th letter ‘T’ in A
ACALL LOAD ; call load subroutine
 MOV A, #'H' ; load 4th letter ‘H’ in A
ACALL LOAD ; call load subroutine
SJMP LOOP ; repeat steps
LOAD: MOV SBUF, A
HERE: JNB TI, HERE ; Check for transmit interrupt flag
CLR TI ; Clear transmit interrupt flag
RET

END

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 11 |

ARM 7 MICROCONTROLLER

INTRODUCTION:

The ARM was originally developed at Acorn Computers Limited of Cambridge , England,

between 1983 and 1985. It was the first RISC microprocessor developed for commercial use

and has some significant differences from subsequent RISC architectures. In 1990 ARM

Limited was established as a separate company specifically to widen the exploitation of ARM

technology and it is established as a market-leader for low-power and cost-sensitive

embedded applications. The ARM is supported by a toolkit which includes an instruction set

emulator for hardware modelling and software testing and benchmarking, an assembler, C

and C++ compilers, a linker and a symbolic debugger.

The 16-bit CISC microprocessors that were available in 1983 were slower than standard

memory parts. They also had instructions that took many clock cycles to complete (in some

cases, many hundreds of clock cycles), giving them very long interrupt latencies. As a result

of these frustrations with the commercial microprocessor offerings, the design of a

proprietary microprocessor was considered and ARM chip was designed.

ARM 7TDMI-S Processor :

 The ARM7TDMI-S processor is a member of the ARM family of general-purpose 32-bit

microprocessors. The ARM family offers high performance for very low-power consumption

and gate count. The ARM7TDMI-S processor has a Von Neumann architecture, with a single

32-bit data bus carrying both instructions and data. Only load, store, and swap instructions

can access data from memory. The ARM7TDMI-S processor uses a three stage pipeline to

increase the speed of the flow of instructions to the processor. This enables several

operations to take place simultaneously, and the processing, and memory systems to

operate continuously. In the three-stage pipeline the instructions are executed in three

stages

The three stage pipelined architecture of the ARM7 processor is shown in the above figure.

ARM7TDMIS stands for

T: THUMB ;

D for on-chip Debug support, enabling the processor to halt in response to a debug request,

M: enhanced Multiplier, yield a full 64-bit result, high performance

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 12 |

I: Embedded ICE hardware (In Circuit emulator)

S : Synthesizable

FEATURES OF ARM PROCESSORS

The ARM processors are based on RISC architectures and this architecture has provided

small implementations, and very low power consumption. Implementation size,

performance, and very low power consumption remain the key features in the development

of the ARM devices.

The typical RISC architectural features of ARM are :

 A large uniform register file

 A load/store architecture, where data-processing operations only operate on register

 contents, not directly on memory contents

 Simple addressing modes, with all load/store addresses being determined from

register

 contents and instruction fields only uniform and fixed-length instruction fields, to

 simplify instruction decode.

 Control over both the Arithmetic Logic Unit (ALU) and shifter in most data-

processing

 instructions to maximize the use of an ALU and a shifter

 Auto-increment and auto-decrement addressing modes to optimize program loops

 Load and Store Multiple instructions to maximize data throughput

 Conditional execution of almost all instructions to maximize execution throughput.

ARM Processor Families

Architecture

version

Processor

Families

Processor

Features

Microcontroller

ARM v4T

ARM7TDMI
(1995)

ARM720T
ARM740T

Von Neumann,
3-stage pipeline

LPC2100 series

ARM9TDMI ARM920T

ARM922T

ARM942T

MMU, Harvard,
5-stage pipeline

SAM9G, LPC29xx,
LPC3xxx, STR9

ARM v5TE,

ARM v5TEJ

ARM9E

(1997)

ARM926EJ-S, MMU, DSP, Jazelle, SAM9XE

ARM946E-S, MPU, DSP

ARM966HS MPU (optional), DSP

ARM10E ARM1020E MMU, DSP

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 13 |

(1999) ARM1026EJ-S MMU/MPU, DSP, Jazelle

ARM v6
ARM11

(2003)

ARM1136J(F)-S MMU, TrustZone, DSP,
Jazelle

MSM7000, i.MX3x

ARM1156T2(F)-S MPU, DSP

ARM1176JZ(F)-S, MMU, TrustZone, DSP,
Jazelle

BCM2835

ARM11 MP core
N

MMU, Multiprocessor
cache support DSP,
Jazelle

ARM v4T

ARM7TDMI

(1995)

ARM720T

ARM740T

Von Neumann,

3-stage pipeline

LPC2100 series

ARM9TDMI
ARM920T ARM922T

ARM942T

MMU, Harvard,

5-stage pipeline

SAM9G, LPC29xx,

LPC3xxx, STR9

ARM v5TE, ARM

v5TEJ

ARM9E (1997)

ARM926EJ-S, MMU, DSP, Jazelle, SAM9XE

ARM946E-S, MPU, DSP

ARM966HS MPU (optional), DSP

ARM10E (1999)

ARM1020E MMU, DSP

ARM1026EJ-S MMU/MPU, DSP, Jazelle

ARM v6 ARM11 (2003)

ARM1136J(F)-S MMU, TrustZone, DSP,

Jazelle

MSM7000, i.MX3x

ARM1156T2(F)-S MPU, DSP

ARM1176JZ(F)-S, MMU, TrustZone, DSP,

Jazelle

BCM2835

ARM11 MP core N. MMU/MPU, DSP, Jazelle

ARM v6-M Cortex
Cortex-M0 NVIC LPC1200, 1100 series

STM32F0x0, x1, x2

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 14 |

Cortex-M1 FPGA TCM Interface,

NVIC

STM32F1, F2, L1, W

ARM v7-M
Cortex Cortex-M3 MPU (optional), NVIC ST32F512-M, LPC1300,

1700, 1800

ARM v7-R

Cortex Cortex-R4 MPU, DSP STA1095, SAM4L,

SAM4N, SAM4S

Cortex-R4F MPU, DSP, Floating Point SAM4C, SAM4E, LPC40xx,

43xx, STM32 F3, F4

ARM v7-A

Cortex Cortex-A8 MMU, Trust Zone, DSP,

Jazelle, Neon, Floating

Point

Freescale i.MX5X

Cortex-A9 MMU, Trust Zone,

Multiprocessor, DSP,

Jazelle, Neon Floating

Point

Freescale i.MX6QP

There are three basic instruction sets for ARM.

 A 32- bit ARM instruction set

 A 16 –bit Thumb instruction set and

 The 8-bit Java Byte code used in Jazelle state

The Thumb instruction set is a subset of the most commonly used32-bit ARM instructions.

Thumb instructions operate with the standard ARM register configurations ,enabling

excellent interoperability between ARM and Thumb states. This Thumb state is nearly

65% of the ARM code and can provide 160%of the performance of ARM code when working

ona 16-bit memory system. This Thumb mode is used in embedded systems where memory

resources are limited. The Jazelle mode is used in ARM9 processor to work with 8-bit Java

code.

ARCHITECTURE OF ARM PROCESSORS:

The ARM 7 processor is based on Von Neman model with a single bus for both data and

instructions..(The ARM9 uses Harvard model).Though this will decrease the performance of

ARM, it is overcome by the pipe line concept. ARM uses the Advanced Microcontroller Bus

Architecture (AMBA) bus architecture. This AMBA include two system buses: the AMBA

High-Speed Bus (AHB) or the Advanced System Bus (ASB), and the Advanced Peripheral Bus

(APB).

The ARM processor consists of

 Arithmetic Logic Unit (32-bit)

 One Booth multiplier(32-bit)

 One Barrel shifter

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 15 |

 One Control unit

 Register file of 37 registers each of 32 bits.

In addition to this the ARM also consists of a Program status register of 32 bits, Some

special registers like the instruction register, memory data read and write register and

memory address register ,one Priority encoder which is used in the multiple load and

store instruction to indicate which register in the register file to be loaded or stored and

Multiplexers etc.

ARM Registers :

ARM has a total of 37 registers .In which - 31 are general-purpose registers of 32-bits, and

six status registers .But all these registers are not seen at once. The processor state and

operating mode decide which registers are available to the programmer. At any time, among

the 31 general purpose registers only 16 registers are available to the user. The remaining

15 registers are used to speed up exception processing. there are two program status

registers: CPSR and SPSR (the current and saved program status registers, respectively .In

ARM state the registers r0 to r13 are orthogonal—any instruction that you can apply to r0

you can equally well apply to any of the other registers.

The main bank of 16 registers is used by all unprivileged code. These are the User mode

registers. User mode is different from all other modes as it is unprivileged. In addition to this

register bank ,there is also one 32-bit Current Program status Register(CPSR)

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 16 |

In the 15 registers ,the r13 acts as a stack pointer register and r14 acts as a link register and

r15 acts as a program counter register. Register r13 is the sp register ,and it is used to store

the address of the stack top. R13 is used by the PUSH and POP instructions in T variants, and

by the SRS and RFE instructions from ARMv6.

Register 14 is the Link Register (LR). This register holds the address of the next instruction

after a Branch and Link (BL or BLX) instruction, which is the instruction used to make a

subroutine call. It is also used for return address information on entry to exception modes.

At all other times, R14 can be used as a general-purpose register.

Register 15 is the Program Counter (PC). It can be used in most instructions as a pointer to

the instruction which is two instructions after the instruction being executed.

The remaining 13 registers have no special hardware purpose.

CPSR : The ARM core uses the CPSR register to monitor and control internal operations. The

CPSR is a dedicated 32-bit register and resides in the register file. The CPSR is divided into

four fields, each of 8 bits wide : flags, status, extension, and control. The extension and status

fields are reserved for future use. The control field contains the processor mode, state, and

interrupt mask bits. The flags field contains the condition flags. The 32-bit CPSR register is

shown below.

Processor Modes: There are seven processor modes .Six privileged modes abort, fast

interrupt request, interrupt request, supervisor, system, and undefined and one non-

privileged mode called user mode.

The processor enters abort mode when there is a failed attempt to access memory. Fast

interrupt request and interrupt request modes correspond to the two interrupt levels

available on the ARM processor. Supervisor mode is the mode that the processor is in after

reset and is generally the mode that an operating system kernel operates in. System mode is

a special version of user mode that allows full read-write access to the CPSR. Undefined

mode is used when the processor encounters an instruction that is undefined or not

supported by the implementation. User mode is used for programs and applications.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 17 |

Banked Registers : Out of the 32 registers , 20 registers are hidden from a program at

different times. These registers are called banked registers and are identified by the shading

in the diagram. They are available only when the processor is in a particular mode; for

example, abort mode has banked registers r13_abt , r14_abt and spsr _abt. Banked registers

of a particular mode are denoted by an underline character post-fixed to the mode

mnemonic or _mode.

When the T bit is 1, then the processor is in Thumb state. To change states the core executes

a specialized branch instruction and when T= 0 the processor is in ARM state and executes

ARM instructions. There are two interrupt request levels available on the ARM processor

core— interrupt request (IRQ) and fast interrupt request (FIQ).

V, C , Z , N are the Condition flags .

V (oVerflow) : Set if the result causes a signed overflow

C (Carry) : Is set when the result causes an unsigned carry

Z (Zero) : This bit is set when the result after an arithmetic operation is zero, frequently

used to indicate equality

N (Negative) : This bit is set when the bit 31 of the result is a binary 1.

THE ARM PROGRAMMER'S MODEL

A processor's instruction set defines the operations that the programmer can use to change

the state of the system incorporating the processor. This state usually comprises the values

of the data items in the processor's visible registers and the system's memory. Each

instruction can be viewed as performing a defined transformation from the state before the

instruction is executed to the state after it has completed. Note that although a processor

will typically have many invisible registers involved in executing an instruction, the values

of these registers before and after the instruction is executed are not significant; only the

values in the visible registers have any significance. The visible registers in an ARM

processor are shown in Figure

When writing user-level programs, only the 15 general-purpose 32-bit registers (r0 to r14),

the program counter (r15) and the current program status register (CPSR) need be

considered. The remaining registers are used only for system-level programming and for

handling exceptions (for example, interrupts).

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 18 |

Figure : ARM's visible registers.

The Current Program Status Register (CPSR)

The CPSR is used in user-level programs to store the condition code bits. These bits are used,

for example, to record the result of a comparison operation and to control whether or not a

conditional branch is taken. The user-level programmer need not usually be concerned with

how this register is configured, but for completeness the register is illustrated in Figure .

Figure: ARM CPSR format

The bits at the bottom of the register control the processor mode ,instruction set and

interrupt enables ('I' and 'F') are protected from change by the user-level program. The

condition code flags are in the top four bits of the register and have the following meanings:

 N: Negative; the last ALU operation which changed the flags produced a negative

result (the top bit of the 32-bit result was a one).

 Z: Zero; the last ALU operation which changed the flags produced a zero result

(every bit of the 32-bit result was zero).

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 19 |

 C: Carry; the last ALU operation which changed the flags generated a carry-out,

either as a result of an arithmetic operation in the ALU or from the shifter.

 V: oVerflow; the last arithmetic ALU operation which changed the flags generated

an overflow into the sign bit.

The memory system
In addition to the processor register state, an ARM system has memory state. Memory may

be viewed as a linear array of bytes numbered from zero up to 232-l. Data items may be 8-

bit bytes, 16-bit half-words or 32-bit words. Words are always aligned on 4-byte boundaries

(that is, the two least significant address bits are zero) and half-words are aligned on even

byte boundaries.

The memory organization is illustrated in Figure . This shows a small area of memory where

each byte location has a unique number. A byte may occupy any of these locations, and a few

examples are shown in the figure. A word-sized data item must occupy a group of four byte

locations starting at a byte address which is a multiple of four, and again the figure contains

a couple of examples. Half-words occupy two byte locations starting at an even byte address.

 Figure: ARM memory organization

Load-store architecture
In common with most RISC processors, ARM employs a load-store architecture. This means

that the instruction set will only process (add, subtract, and so on) values which are in

registers (or specified directly within the instruction itself), and will always place the results

of such processing into a register. The only operations which apply to memory state are

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 20 |

ones which copy memory values into registers(load instructions) or copy register values

into memory (store instructions).

CISC processors typically allow a value from memory to be added to a value in a register,

and sometimes allow a value in a register to be added to a value in memory. ARM does not

support such 'memory-to-memory' operations. Therefore all ARM instructions fall into one

of the following three categories:

1. Data processing instructions. These use and change only register values. For example,

an instruction can add two registers and place the result in a register.

2. Data transfer instructions. These copy memory values into registers (load

instructions) or copy register values into memory (store instructions). An addi tional

form, useful only in systems code, exchanges a memory value with a register value.

3. Control flow instructions. Normal instruction execution uses instructions stored

at consecutive memory addresses. Control flow instructions cause execution to

switch to a different address, either permanently (branch instructions) or saving

a return address to resume the original sequence (branch and link instructions)

or trapping into system code (supervisor calls).

Supervisor mode

The ARM processor supports a protected supervisor mode. The protection mechanism

ensures that user code cannot gain supervisor privileges without appropriate checks being

carried out to ensure that the code is not attempting illegal operations.

The upshot of this for the user-level programmer is that system-level functions can only be

accessed through specified supervisor calls. These functions generally include any accesses

to hardware peripheral registers, and to widely used operations such as character input and

output. User-level programmers are principally concerned with devising algorithms to

operate on the data 'owned' by their programs, and rely on the operating system to handle

all transactions with the world outside their programs.

The ARM instruction set

All ARM instructions are 32 bits wide (except the compressed 16-bit Thumb instructions)

and are aligned on 4-byte boundaries in memory. The most notable features of the ARM

instruction set are:

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 21 |

 The load-store architecture;

 3-address data processing instructions (that is, the two source operand registers

and the result register are all independently specified);

 Conditional execution of every instruction;

 The inclusion of very powerful load and store multiple register instructions;

 The ability to perform a general shift operation and a general ALU operation in a

single instruction that executes in a single clock cycle;

 Open instruction set extension through the coprocessor instruction set, including

adding new registers and data types to the programmer's model;

 A very dense 16-bit compressed representation of the instruction set in the Thumb

architecture.

The I/O system

The ARM handles I/O (input/output) peripherals (such as disk controllers, network

interfaces, and so on) as memory-mapped devices with interrupt support. The internal

registers in these devices appear as addressable locations within the ARM's memory map

and may be read and written using the same (load-store) instructions as any other memory

locations.

Peripherals may attract the processor's attention by making an interrupt request using

either the normal interrupt (IRQ) or the fast interrupt (FIQ) input. Both interrupt inputs are

level-sensitive and maskable. Normally most interrupt sources share the IRQ input, with just

one or two time-critical sources connected to the higher-priority FIQ input. Some systems

may include direct memory access (DMA) hardware external to the processor to handle

high-bandwidth I/O traffic. Interrupts are a form of exception and are handled as outlined

below.

ARM exceptions

The ARM architecture supports a range of interrupts, traps and supervisor calls, all grouped

under the general heading of exceptions. The general way these are handled is the same in

all cases:

 The current state is saved by copying the PC into rl4_exc and the CPSR into SPSR_exc

(where exc stands for the exception type).

 The processor operating mode is changed to the appropriate exception mode.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 22 |

 The PC is forced to a value between 0016 and 1C16, the particular value depending

on the type of exception.

The instruction at the location the PC is forced to (the vector address) will usually contain a

branch to the exception handler. The exception handler will use rl3_exc, which will normally

have been initialized to point to a dedicated stack in memory, to save some user registers for

use as work registers.

The return to the user program is achieved by restoring the user registers and then using an

instruction to restore the PC and the CPSR atomically. This may involve some adjustment of

the PC value saved in rl4_exc to compensate for the state of the pipeline when the exception

arose.

SYSTEM SOFTWARE

 The ARM C compiler

The ARM C compiler is compliant with the ANSI (American National Standards Institute)

standard for C and is supported by the appropriate library of standard functions. It uses the

ARM Procedure Call Standard for all externally available functions. It can be told to produce

assembly source output instead of ARM object format, so the code can be inspected, or even

hand optimized, and then assembled subsequently. The compiler can also produce Thumb

code.

Figure : The structure of the ARM cross-development toolkit

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 23 |

 The ARM assembler

The ARM assembler is a full macro assembler which produces ARM object format output

that can be linked with output from the C compiler. Assembly source language is near

machine-level, with most assembly instructions translating into single ARM (or Thumb)

instructions.

 The linker

The linker takes one or more object files and combines them into an executable program.

It resolves symbolic references between the object files and extracts object modules from

libraries as needed by the program. It can assemble the various components of the program

in a number of different ways, depending on whether the code is to run in RAM (Random

Access Memory, which can be read and written) or ROM (Read Only Memory), whether

overlays are required, and so on.

Normally the linker includes debug tables in the output file. If the object files were compiled

with full debug information, this will include full symbolic debug tables (so the program can

be debugged using the variable names in the source program). The linker can also produce

object library modules that are not executable but are ready for efficient linking with object

files in the future.

 ARMsd

The ARM symbolic debugger is a front-end interface to assist in debugging programs

running either under emulation (on the ARMulator) or remotely on a target system such as

the ARM development board. The remote system must support the appropriate remote

debug protocols either via a serial line or through a JTAG test interface. Debugging a system

where the processor core is embedded within an application-specific system chip is a

complex issue.

At its most basic, ARMsd allows an executable program to be loaded into the ARMulator or a

development board and run. It allows the setting of breakpoints, which are addresses in the

code that, if executed, cause execution to halt so that the processor state can be examined. In

the ARMulator, or when running on hardware with appropriate support, it also allows the

setting of watchpoints. These are memory addresses that, if accessed as data addresses,

cause execution to halt in a similar way.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 24 |

At a more sophisticated level ARMsd supports full source level debugging, allowing the C

programmer to debug a program using the source file to specify breakpoints and using

variable names from the original program.

 ARMulator

The ARMulator (ARM emulator) is a suite of programs that models the behaviour of various

ARM processor cores in software on a host system. It can operate at various levels of

accuracy:

 Instruction-accurate modelling gives the exact behaviour of the system state without

regard to the precise timing characteristics of the processor.

 Cycle-accurate modelling gives the exact behaviour of the processor on a cycleby-

cycle basis, allowing the exact number of clock cycles that a program requires to be

established.

 Timing-accurate modelling presents signals at the correct time within a cycle,

allowing logic delays to be accounted for.

 All these approaches run considerably slower than the real hardware, but the first incurs

the smallest speed penalty and is best suited to software development.

At its simplest, the ARMulator allows an ARM program developed using the C compiler or

assembler to be tested and debugged on a host machine with no ARM processor connected.

It allows the number of clock cycles the program takes to execute to be measured exactly, so

the performance of the target system can be evaluated. At its most complex, the ARMulator

can be used as the centre of a complete, timing-accurate, C model of the target system, with

full details of the cache and memory management functions added, running an operating

system. In between these two extremes the ARMulator comes with a set of model

prototyping modules including a rapid prototype memory model and coprocessor

interfacing support. The ARMulator can also be used as the core of a timing-accurate ARM

behavioural model in a hardware simulation environment based around a language such

as VHDL. (VHDL is a standard, widely supported hardware description language.) A VHDL

'wrapper' must be generated to interface the ARMulator C code to the VHDL environment.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 1

MODULE V

THE MEMORY SYSTEM
Memory is an essential element of a computer. Without its memory, a computer is of hardly any

use. Memory plays an important role in saving and retrieving data. The performance of the computer

system depends upon the size of the memory. Memory is of following types:

1. Primary Memory / Volatile Memory.

2. Secondary Memory / Non Volatile Memory.

1. Primary Memory / Volatile Memory: Primary Memory is internal memory of the computer. RAM

AND ROM both form part of primary memory. The primary memory provides main working space to

the computer.The following terms comes under primary memory of a computer are discussed below:

 Random Access Memory (RAM): The primary storage is referred to as random access

memory (RAM) because it is possible to randomly select and use any location of the memory

directly store and retrieve data. It takes same time to any address of the memory as the first

address. It is also called read/write memory. The storage of data and instructions inside the

primary storage is temporary. It disappears from RAM as soon as the power to the computer is

switched off. The memories, which lose their content on failure of power supply, are known as

volatile memories .So now we can say that RAM is volatile memory.

RAM is of two types

1. Static RAM (SRAM)

2. Dynamic RAM (DRAM)

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 2

 Static RAM (SRAM)

The word static indicates that the memory retains its contents as long as power remains applied.

However, data is lost when the power gets down due to volatile nature. SRAM chips use a

matrix of 6-transistors and no capacitors. Transistors do not require power to prevent leakage,

so SRAM need not have to be refreshed on a regular basis. Because of the extra space in the

matrix, SRAM uses more chips than DRAM for the same amount of storage space, thus making

the manufacturing costs higher. Static RAM is used as cache memory needs to be very fast and

small.

 Dynamic RAM (DRAM)

DRAM, unlike SRAM, must be continually refreshed in order for it to maintain the data. This

is done by placing the memory on a refresh circuit that rewrites the data several hundred times

per second. DRAM is used for most system memory because it is cheap and small. All DRAMs

are made up of memory cells. These cells are composed of one capacitor and one transistor.

 Read Only Memory (ROM): There is another memory in computer, which is called Read

Only Memory (ROM). Again it is the ICs inside the PC that form the ROM. The storage of

program and data in the ROM is permanent. The ROM stores some standard processing

programs supplied by the manufacturers to operate the personal computer. The ROM can only

be read by the CPU but it cannot be changed. The basic input/output program is stored in the

ROM that examines and initializes various equipment attached to the PC when the power

switch is ON. The memories, which do not lose their content on failure of power supply, are

known as non-volatile memories. ROM is non-volatile memory.

 PROM: There is another type of primary memory in computer, which is called

Programmable Read Only Memory (PROM). You know that it is not possible to modify or

erase programs stored in ROM, but it is possible for you to store your program in PROM

chip. Once the programmers’ are written it cannot be changed and remain intact even if

power is switched off. Therefore programs or instructions written in PROM or ROM

cannot be erased or changed.

 EPROM: This stands for Erasable Programmable Read Only Memory, which overcome the

problem of PROM & ROM. EPROM chip can be programmed time and again by erasing the

information stored earlier in it. Information stored in EPROM exposing the chip for some

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 3

time ultraviolet light and it erases chip is reprogrammed using a special programming

facility. When the EPROM is in use information can only be read.

 Cache Memory: The speed of CPU is extremely high compared to the access time of main

memory. Therefore the performance of CPU decreases due to the slow speed of main

memory. To decrease the mismatch in operating speed, a small memory chip is attached

between CPU and Main memory whose access time is very close to the processing speed of

CPU. It is called CACHE memory. CACHE memories are accessed much faster than

conventional RAM. It is used to store programs or data currently being executed or

temporary data frequently used by the CPU. So each memory makes main memory to be

faster and larger than it really is. It is also very expensive to have bigger size of cache

memory and its size is normally kept small.

 Registers: The CPU processes data and instructions with high speed; there is also

movement of data between various units of computer. It is necessary to transfer the

processed data with high speed. So the computer uses a number of special memory units

called registers. They are not part of the main memory but they store data or information

temporarily and pass it on as directed by the control unit.

2. Secondary Memory / Non-Volatile Memory:

Secondary memory is external and permanent in nature. The secondary memory is

concerned with magnetic memory. Secondary memory can be stored on storage media like

floppy disks, magnetic disks, magnetic tapes, This memory can also be stored optically on

Optical disks - CD-ROM. The following terms comes under secondary memory of a

computer are discussed below:

 Magnetic Tape: Magnetic tapes are used for large computers like mainframe computers

where large volume of data is stored for a longer time. In PC also you can use tapes in the

form of cassettes. The cost of storing data in tapes is inexpensive. Tapes consist of

magnetic materials that store data permanently. It can be 12.5 mm to 25 mm wide plastic

film-type and 500 meter to 1200 meter long which is coated with magnetic material. The

deck is connected to the central processor and information is fed into or read from the

tape through the processor. It’s similar to cassette tape recorder.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 4

 Magnetic Disk: You might have seen the gramophone record, which is circular like a disk

and coated with magnetic material. Magnetic disks used in computer are made on the

same principle. It rotates with very high speed inside the computer drive. Data is stored

on both the surface of the disk. Magnetic disks are most popular for direct access storage

device. Each disk consists of a number of invisible concentric circles called tracks.

Information is recorded on tracks of a disk surface in the form of tiny magnetic spots. The

presence of a magnetic spot represents one bit and its absence represents zero bit. The

information stored in a disk can be read many times without affecting the stored data. So

the reading operation is non-destructive. But if you want to write a new data, then the

existing data is erased from the disk and new data is recorded. For Example-Floppy Disk.

 Optical Disk: With every new application and software there is greater demand for

memory capacity. It is the necessity to store large volume of data that has led to the

development of optical disk storage medium. Optical disks can be divided into the

following categories:

a) Compact Disk/ Read Only Memory (CD-ROM

b) Write Once, Read Many (WORM)

c) Erasable Optical Disk

Comparison Table RAM & ROM

Basis for Comparison RAM ROM

Stands for Random Access Memory Read Only Memory

Memory type Volatile Non-volatile

Memory capacity 1 to 256 GB per chip 4 to 8 MB per chip

Operation type Read and Write both. Only Read.

Speed Fast Comparatively slow.

Storage type Temporary Permanent

Also referred as Primary memory Secondary memory

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 5

Basis for Comparison RAM ROM

Presence of data
according to power
source

The stored data in RAM lost
in case of power failure.

Data retained in ROM even if
the power is turned off.

Accessibility to processor Processor can directly
access the data in RAM.

Processor cannot directly
access the data in ROM.

Cost High Comparatively low

Types SRAM and DRAM PROM, EPROM and EEPROM

Comparison Table SRAM & DRAM

BASIS FOR
COMPARISON

SRAM DRAM

Speed Faster Slower

Size Small Large

Cost Expensive Cheap

Used in Cache memory Main memory

Density Less dense Highly dense

Construction Complex and uses
transistors and latches.

Simple and uses capacitors and very
few transistors.

Single block of
memory requires

6 transistors Only one transistor.

Charge leakage
property

Not present Present hence require power refresh
circuitry

Power consumption Low High

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 6

MEMORY HIERARCHY

Characteristics of Memory Hierarchy are following when we go from top to bottom.

 Capacity in terms of storage increases.

 Cost per bit of storage decreases.

 Frequency of access of the memory by the CPU decreases.

 Access time by the CPU increases

 We can infer the following characteristics of Memory Hierarchy Design from above figure:

1. Capacity: It is the global volume of information the memory can store. As we move from

top to bottom in the Hierarchy, the capacity increases.

2. Access Time:

It is the time interval between the read/write request and the availability of the data. As

we move from top to bottom in the Hierarchy, the access time increases.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 7

3. Performance:

Earlier when the computer system was designed without Memory Hierarchy design, the

speed gap increases between the CPU registers and Main Memory due to large difference

in access time. This results in lower performance of the system and thus, enhancement

was required. This enhancement was made in the form of Memory Hierarchy Design

because of which the performance of the system increases. One of the most significant

ways to increase system performance is minimizing how far down the memory hierarchy

one has to go to manipulate data.

4. Cost per bit:

As we move from bottom to top in the Hierarchy, the cost per bit increases i.e. Internal

Memory is costlier than External Memory.

CACHE MEMORY

Cache Memory is a special very high-speed memory. It is used to speed up and synchronizing

with high-speed CPU. Cache memory is costlier than main memory or disk memory but

economical than CPU registers. Cache memory is an extremely fast memory type that acts as a

buffer between RAM and the CPU. It holds frequently requested data and instructions so that

they are immediately available to the CPU when needed.

Cache memory is used to reduce the average time to access data from the Main memory. The

cache is a smaller and faster memory which stores copies of the data from frequently used main

memory locations. There are various different independent caches in a CPU, which store

instructions and data.

Levels of memory:

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 8

 Level 1 or Register – It is a type of memory in which data is stored and accepted that are

immediately stored in CPU. Most commonly used register is accumulator, Program

counter, address register etc.

 Level 2 or Cache memory – It is the fastest memory which has faster access time where

data is temporarily stored for faster access.

 Level 3 or Main Memory – It is memory on which computer works currently. It is small

in size and once power is off data no longer stays in this memory.

 Level 4 or Secondary Memory – It is external memory which is not as fast as main

memory but data stays permanently in this memory.

Cache Performance:

When the processor needs to read or write a location in main memory, it first checks for a

corresponding entry in the cache.

 If the processor finds that the memory location is in the cache, a cache hit has

occurred and data is read from cache

 If the processor does not find the memory location in the cache, a cache miss has

occurred. For a cache miss, the cache allocates a new entry and copies in data from

main memory, then the request is fulfilled from the contents of the cache.

Cache Performance Improvement

The performance of cache memory is frequently measured in terms of a quantity called Hit ratio.

Hit ratio = hit / (hit + miss) = no. of hits/total accesses

We can improve Cache performance using higher cache block size, higher associativity, reduce

miss rate, reduce miss penalty, and reduce the time to hit in the cache.

Cache Mapping:

There are three different types of mapping used for the purpose of cache memory which are as

follows: Direct mapping, Associative mapping, and Set-Associative mapping. These are explained

below.

1. Direct Mapping – The simplest technique, known as direct mapping, maps each block of

main memory into only one possible cache line. or In Direct mapping, assigne each

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 9

memory block to a specific line in the cache. If a line is previously taken up by a memory

block when a new block needs to be loaded, the old block is trashed. An address space is

split into two parts index field and a tag field. The cache is used to store the tag field

whereas the rest is stored in the main memory. Direct mapping`s performance is directly

proportional to the Hit ratio.

i = j modulo m
where
i=cache line number

 j= main memory block number

 m=number of lines in the cache

For purposes of cache access, each main memory address can be viewed as consisting of three

fields. The least significant w bits identify a unique word or byte within a block of main memory.

In most contemporary machines, the address is at the byte level. The remaining s bits specify one

of the 2S
blocks of main memory. The cache logic interprets these s bits as a tag of s-r bits (most

significant portion) and a line field of r bits. This latter field identifies one of the m=2
r

lines of the

cache.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 10

2. Associative Mapping – In this type of mapping, the associative memory is used to store

content and addresses of the memory word. Any block can go into any line of the cache.

This means that the word id bits are used to identify which word in the block is needed,

but the tag becomes all of the remaining bits. This enables the placement of any word at

any place in the cache memory. It is considered to be the fastest and the most flexible

mapping form.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 11

3. Set-associative Mapping – This form of mapping is an enhanced form of direct mapping

where the drawbacks of direct mapping are removed. Set associative addresses the

problem of possible thrashing in the direct mapping method. It does this by saying that

instead of having exactly one line that a block can map to in the cache, we will group a few

lines together creating a set. Then a block in memory can map to any one of the lines of a

specific set..Set-associative mapping allows that each word that is present in the cache can

have two or more words in the main memory for the same index address. Set associative

cache mapping combines the best of direct and associative cache mapping techniques.

In this case, the cache consists of a number of sets, each of which consists of a number of

lines. The relationships are

m = v * k

i= j mod v

where

i=cache set number

j=main memory block number

v=number of sets

m=number of lines in the cache number of sets

k=number of lines in each set

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 12

Application of Cache Memory

 Usually, the cache memory can store a reasonable number of blocks at any given time, but

this number is small compared to the total number of blocks in the main memory.

 The correspondence between the main memory blocks and those in the cache is specified

by a mapping function.

Types of Cache

 Primary Cache – A primary cache is always located on the processor chip. This cache

is small and its access time is comparable to that of processor registers.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 13

 Secondary Cache – Secondary cache is placed between the primary cache and the

rest of the memory. It is referred to as the level 2 (L2) cache. Often, the Level 2 cache

is also housed on the processor chip.

LOCALITY OF REFERENCE

Since size of cache memory is less as compared to main memory. So to check which part of

main memory should be given priority and loaded in cache is decided based on locality of

reference.

Types of Locality of reference

 Spatial Locality of reference This says that there is a chance that element will be present

in the close proximity to the reference point and next time if again searched then more

close proximity to the point of reference.

 Temporal Locality of reference In this Least recently used algorithm will be used.

Whenever there is page fault occurs within a word will not only load word in main

memory but complete page fault will be loaded because spatial locality of reference rule

says that if you are referring any word next word will be referred in its register that’s why

we load complete page table so the complete block will be loaded.

VIRTUAL MEMORY

A computer can address more memory than the amount physically installed on the system. This

extra memory is actually called virtual memory and it is a section of a hard that's set up to

emulate the computer's RAM.

The main visible advantage of this scheme is that programs can be larger than physical memory.

Virtual memory serves two purposes. First, it allows us to extend the use of physical memory by

using disk. Second, it allows us to have memory protection, because each virtual address is

translated to a physical address.

Following are the situations, when entire program is not required to be loaded fully in main

memory.

 User written error handling routines are used only when an error occured in the data or

computation.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 14

 Certain options and features of a program may be used rarely.

 Many tables are assigned a fixed amount of address space even though only a small

amount of the table is actually used.

 The ability to execute a program that is only partially in memory would counter many

benefits.

 Less number of I/O would be needed to load or swap each user program into memory.

 A program would no longer be constrained by the amount of physical memory that is

available.

 Each user program could take less physical memory, more programs could be run the

same time, with a corresponding increase in CPU utilization and throughput.

Modern microprocessors intended for general-purpose use, a memory management unit, or

MMU, is built into the hardware. The MMU's job is to translate virtual addresses into physical

addresses. A basic example is given below:

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 15

Paging

A computer can address more memory than the amount physically installed on the system. This

extra memory is actually called virtual memory and it is a section of a hard that's set up to

emulate the computer's RAM. Paging technique plays an important role in implementing virtual

memory.

Paging is a memory management technique in which process address space is broken into

blocks of the same size called pages (size is power of 2, between 512 bytes and 8192 bytes). The

size of the process is measured in the number of pages.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 16

Similarly, main memory is divided into small fixed-sized blocks of (physical) memory

called frames and the size of a frame is kept the same as that of a page to have optimum

utilization of the main memory and to avoid external fragmentation.

ADDRESS TRANSLATION

Page address is called logical address and represented by page number and the offset.

Logical Address = Page number + page offset

Frame address is called physical address and represented by a frame number and the offset.

Physical Address = Frame number + page offset

A data structure called page map table is used to keep track of the relation between a page of a

process to a frame in physical memory.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 17

When the system allocates a frame to any page, it translates this logical address into a physical

address and create entry into the page table to be used throughout execution of the program.

When a process is to be executed, its corresponding pages are loaded into any available memory

frames. Suppose you have a program of 8Kb but your memory can accommodate only 5Kb at a

given point in time, then the paging concept will come into picture. When a computer runs out of

RAM, the operating system (OS) will move idle or unwanted pages of memory to secondary

memory to free up RAM for other processes and brings them back when needed by the program.

This process continues during the whole execution of the program where the OS keeps

removing idle pages from the main memory and write them onto the secondary memory and

bring them back when required by the program.

Advantages and Disadvantages of Paging

Here is a list of advantages and disadvantages of paging

 Paging reduces external fragmentation, but still suffer from internal fragmentation.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 18

 Paging is simple to implement and assumed as an efficient memory management

technique.

 Due to equal size of the pages and frames, swapping becomes very easy.

 Page table requires extra memory space, so may not be good for a system having small

RAM.

Segmentation

Segmentation is a memory management technique in which each job is divided into several

segments of different sizes, one for each module that contains pieces that perform related

functions. Each segment is actually a different logical address space of the program.

When a process is to be executed, its corresponding segmentation are loaded into non-

contiguous memory though every segment is loaded into a contiguous block of available

memory.

Segmentation memory management works very similar to paging but here segments are of

variable-length where as in paging pages are of fixed size.

A program segment contains the program's main function, utility functions, data structures, and

so on. The operating system maintains a segment map table for every process and a list of free

memory blocks along with segment numbers, their size and corresponding memory locations in

main memory. For each segment, the table stores the starting address of the segment and the

length of the segment. A reference to a memory location includes a value that identifies a

segment and an offset.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 19

INPUT/OUTPUT ORGANIZATION

The processor bus is the bus defied by the signals on the processor chip itself. Devices that

require a very high-speed connection to the processor, such as the main memory, may be

connected directly to this bus. For electrical reasons, only a few devices can be connected in this

manner. The motherboard usually provides another bus that can support more devices. The two

buses are interconnected by a circuit, which we will call a bridge, that translates the signals and

protocols of one bus into those of the other. Devices connected to the expansion bus appear to

the processor as if they were connected directly to the processor’s own bus. The only difference

is that the bridge circuit introduces a small delay in data transfers between the processor and

those devices.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 20

It is not possible to define a uniform standard for the processor bus. The structure of this

bus is closely tied to the architecture of the processor. It is also dependent on the electrical

characteristics of the processor chip, such as its clock speed. The expansion bus is not subject to

these limitations, and therefore it can use a standardized signaling scheme. A number of

standards have been developed. Some have evolved by default, when a particular design became

commercially successful. For example, IBM developed a bus they called ISA (Industry Standard

Architecture) for their personal computer known at the time as PC AT.

Some standards have been developed through industrial cooperative efforts, even among

competing companies driven by their common self-interest in having compatible products. In

some cases, organizations such as the IEEE (Institute of Electrical and Electronics Engineers),

ANSI (American National Standards Institute), or international bodies such as ISO (International

Standards Organization) have blessed these standards and given them an official status.

A given computer may use more than one bus standards. A typical Pentium computer has both a

PCI bus and an ISA bus, thus providing the user with a wide range of devices to choose from.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 21

Peripheral Component Interconnect (PCI) Bus:-

The PCI bus is a good example of a system bus that grew out of the need for

standardization. It supports the functions found on a processor bus bit in a standardized format

that is independent of any particular processor. Devices connected to the PCI bus appear to the

processor as if they were connected directly to the processor bus. They are assigned addresses in

the memory address space of the processor.

The PCI follows a sequence of bus standards that were used primarily in IBM PCs. Early

PCs used the 8-bit XT bus, whose signals closely mimicked those of Intel’s 80x86 processors.

Later, the 16-bit bus used on the PC At computers became known as the ISA bus. Its extended 32-

bit version is known as the EISA bus. Other buses developed in the eighties with similar

capabilities are the Microchannel used in IBM PCs and the NuBus used in Macintosh computers.

The PCI was developed as a low-cost bus that is truly processor independent. Its design

anticipated a rapidly growing demand for bus bandwidth to support high-speed disks and

graphic and video devices, as well as the specialized needs of multiprocessor systems. As a result,

the PCI is still popular as an industry standard almost a decade after it was first introduced in

1992.

An important feature that the PCI pioneered is a plug-and-play capability for connecting

I/O devices. To connect a new device, the user simply connects the device interface board to the

bus. The software takes care of the rest.

DATA TRANSFER

Programmed I/O

Programmed I/O (PIO) refers to data transfers initiated by a CPU under driver software

control to access registers or memory on a device. The CPU issues a command then waits for I/O

operations to be complete. As the CPU is faster than the I/O module, the problem with

programmed I/O is that the CPU has to wait a long time for the I/O module of concern to be ready

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 22

for either transmission or reception of data. The CPU, while waiting, must repeatedly check the

status of the I/O module, and this process is known as Polling. As a result, the level of the

performance of the entire system is severely degraded.

Programmed I/O basically works in these ways:

 CPU requests I/O operation

 I/O module performs operation

 I/O module sets status bits

 CPU checks status bits periodically

 I/O module does not inform CPU directly

 I/O module does not interrupt CPU

 CPU may wait or come back later

Interrupt Driven I/O

The CPU issues commands to the I/O module then proceeds with its normal work until

interrupted by I/O device on completion of its work. For input, the device interrupts the CPU

when new data has arrived and is ready to be retrieved by the system processor. The actual

actions to perform depend on whether the device uses I/O ports, memory mapping.

For output, the device delivers an interrupt either when it is ready to accept new data or to

acknowledge a successful data transfer. Memory-mapped and DMA-capable devices usually

generate interrupts to tell the system they are done with the buffer. Although Interrupt relieves

the CPU of having to wait for the devices, but it is still inefficient in data transfer of large amount

because the CPU has to transfer the data word by word between I/O module and memory.

Below are the basic operations of Interrupt:

 CPU issues read command

 I/O module gets data from peripheral whilst CPU does other work

 I/O module interrupts CPU

 CPU requests data

 I/O module transfers data

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 23

ASYNCHRONOUS TRANSMISSION

In contrast, asynchronous transmission works in spurts and must insert a start bit before each

data character and a stop bit at its termination to inform the receiver where it begins and ends.

The term asynchronous is used to describe the process where transmitted data is encoded with

start and stop bits, specifying the beginning and end of each character.

An example of asynchronous transmission is shown in the following figure.

These additional bits provide the timing or synchronization for the connection by indicating

when a complete character has been sent or received; thus, timing for each character begins with

the start bit and ends with the stop bit.

When gaps appear between character transmissions, the asynchronous line is said to be in a

mark state. A mark is a binary 1 (or negative voltage) that is sent during periods of inactivity on

the line as shown in the following figure

When the mark state is interrupted by a positive voltage (a binary 0), the receiving system knows

that data characters are going to follow. It is for this reason that the start bit, which precedes the

data character bit, which signals the end of a character, is always a mark bit (binary 1).

The following is a list of characteristics specific to asynchronous communication:

 Each character is preceded by a start bit a

 Gaps or spaces between characters may exist.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 24

With asynchronous transmission, a large text document is organized into long strings of letters

(or characters) that make up the words within the sentences and paragraphs. These characters

are sent over the communication link one at a time and reassembled at the remote location.

In asynchronous transmission, ASCII character would actually be transmitted using 10 bits. For

example, "0100 0001" would become “1 0100 0001 0". The extra one (or zero, depending on

parity bit) at the start and end of the transmission tells the receiver first that a character is

coming and secondly that the character has ended. This method of transmission is used when

data are sent intermittently as opposed to in a solid stream. In the previous example the start and

stop bits are in bold.

The start and stop bits must be of opposite polarity. This allows the receiver to recognize when

the second packet of information is being sent.

Asynchronous transmission is used commonly for communications over telephone lines.

SYNCHRONOUS TRANSMISSION

The term synchronous is used to describe a continuous and timed bound /clock based transfer

of data blocks.

 It is a data transfer method in which a continuous stream of data signals is

accompanied by timing signals (generated by an electronic clock) to ensure that the

transmitter and the receiver are in step (synchronized) with one another.

 The data is sent in blocks (called frames or packets) spaced by fixed time intervals

 Synchronous transmission modes are used when large amounts of data must be

transferred very quickly from one location to the other.

 Synchronous transmission synchronizes transmission speeds at both the

receiving and sending end of the transmission by using clock signals.

 A continual stream of data is then sent between the two nodes.

The data blocks are grouped and spaced in regular intervals and are preceded by special

characters called synchronous idle characters. See the following illustration

After the syn characters are received by the remote device, they are decoded and used to

synchronize the connection. After the connection is correctly synchronized, data

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 25

transmission may begin. An analogy of synchronous transmission would be the transmission of a

large text document. Before the document is transferred across the synchronous line, it is first

broken into blocks of sentences or paragraphs. The blocks are then sent over the communication

link to the remote site.

The timing needed for synchronous connections is obtained from the devices located on the

communication link. All devices on the synchronous link must be set to the same clocking.

The following is a list of characteristics specific to synchronous communication:

 There are no gaps between characters being transmitted.

 Timing is supplied by modems or other devices at each end of the connection.

 Special syn characters precede the data being transmitted.

 The syn characters are used between blocks of data for timing purposes

Due to there being no start and stop bits the data transfer rate is quicker although more errors

will occur, as the clocks will eventually get out of sync, and the receiving device would have the

wrong time that had been agreed in protocol for sending /receiving data, so some bytes could

become corrupted (by losing bits).

Ways to get around this problem include re-check digits to ensure the bytes is correctly

interpreted a protocols (such as Ethernet, SONET, and Token Ring) use synchronous

transmission.

Direct Memory Access:

The data transfer between a fast storage media such as magnetic disk and memory unit is

limited by the speed of the CPU. Thus we can allow the peripherals directly communicate

with each other using the memory buses, removing the intervention of the CPU. This type

of data transfer technique is known as DMA or direct memory access. During DMA the CPU

is idle and it has no control over the memory buses. The DMA controller takes over the

buses to manage the transfer directly between the I/O devices and the memory unit.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 26

Bus Request : It is used by the DMA controller to request the CPU to relinquish the control of the

buses.

Bus Grant : It is activated by the CPU to Inform the external DMA controller that the buses are in

high impedance state and the requesting DMA can take control of the buses. Once the DMA

has taken the control of the buses it transfers the data. This transfer can take place in many

ways.

Types of DMA transfer using DMA controller:

Burst Transfer : DMA returns the bus after complete data transfer. A register is used as a byte

count, being decremented for each byte transfer, and upon the byte count reaching zero, the

DMAC will release the bus. When the DMAC operates in burst mode, the CPU is halted for the

duration of the data transfer. Steps involved are:

 Bus grant request time.

 Transfer the entire block of data at transfer rate of device because the device is usually

slow than the speed at which the data can be transferred to CPU.

 Release the control of the bus back to CPU So, total time taken to transfer the N bytes =

Bus grant request time + (N) * (memory transfer rate) + Bus release control time.

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 27

Where,

X μsec =data transfer time or preparation time (words/block)

Y μsec =memory cycle time or cycle time or transfer time (words/block)

% CPU idle (Blocked)=(Y/X+Y)*100

% CPU Busy=(X/X+Y)*100

Cyclic Stealing : An alternative method in which DMA controller transfers one word at a time

after which it must return the control of the buses to the CPU. The CPU delays its

operation only for one memory cycle to allow the direct memory I/O transfer to “steal”

one memory cycle.

Steps Involved are:

1. Buffer the byte into the buffer

2. Inform the CPU that the device has 1 byte to transfer (i.e. bus grant request)

3. Transfer the byte (at system bus speed)

4. Release the control of the bus back to CPU.

Before moving on transfer next byte of data, device performs step 1 again so that bus isn’t tied up

and the transfer won’t depend upon the transfer rate of device. So, for 1 byte of transfer of data,

time taken by using cycle stealing mode (T). = time required for bus grant + 1 bus cycle to

transfer data + time required to release the bus, it will be N x T

In cycle stealing mode we always follow pipelining concept that when one byte is getting

transferred then Device is parallel preparing the next byte. “The fraction of CPU time to the data

transfer time” if asked then cycle stealing mode is used.

Where,

X μsec =data transfer time or preparation time

(words/block)

Y μsec =memory cycle time or cycle time or transfer

time (words/block)

ECT 206 Computer Architecture And Microcontrollers Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 28

% CPU idle (Blocked) =(Y/X)*100

% CPU busy=(X/Y)*100

Interleaved mode: In this technique , the DMA controller takes over the system bus when the

microprocessor is not using it. An alternate half cycle i.e. half cycle DMA + half cycle processor.

Embedded systems NCERC,PAMPADY

 EMBEDDED SYSTEMS

MODULE 1

Syllabus:

Introduction to Embedded Systems– Components of embedded system hardware–

Software embedded into the system – Embedded Processors - CPU architecture of

ARM processor (ARM9) – CPU Bus Organization and Protocol. Design and

Development life cycle model - Embedded system design process – Challenges in

Embedded system design

Embedded systems NCERC,PAMPADY

EMBEDDED SYSTEMS

Embedded system- definitions

1. “An embedded system is a system that has software embedded into computer-

hardware, which makes a system dedicated for an application (s) or specific part of an

application or product or part of a larger system.”

2. “An embedded system is one that has a dedicated purpose software embedded in a

computer hardware.”

3. “It is a dedicated computer based system for an application(s) or product. It may be an

independent system or a part of large system. Its software usually embeds into a ROM

(Read Only Memory) or flash.”

4. “It is any device that includes a programmable computer but is not itself intended to be

a general purpose computer.”

5. “Embedded Systems are the electronic systems that contain a microprocessor or a

microcontroller, but we do not think of them as computers – the computer is hidden or

embedded in the system.”

BLOCK DIAGRAM OF TYPICAL EMBEDDED SYSTEMS

Embedded systems are basically designed to regulate a physical variable or the state

of some devices by sending some control signals to the Actuators/Devices connected to the

output ports of the system in response to the input signals provided by the

Sensors/Devices connected to the input ports.

Embedded systems NCERC,PAMPADY

A typical embedded system contains a single-chip controller which acts as the

master brain of the system. The controller can be a Micro-processor or a Micro-controller

or a Field Programmable Gate Array device (FPGA) or a Digital Signal Processor (DSP) or

an Application Specific Integrated Circuit (ASIC)/ Application specific system processor

(ASSP). Key boards, push button switches etc. are examples for user interface input devices.

LEDS, Liquid crystal displays (LCDS), Buzzers etc. are examples for common user interface

output devices.

It's not necessary that all embedded systems should incorporate these I /O user

interfaces. It depends only on the type of the application for which the embedded system is

designed. Some embedded systems do not require any manual intervention for its

operation. They automatically sense the variations in the input parameters through the

sensors connected to the input port of the system.

The information from sensors is passed to the processor after signal conditioning &

digitalization. Upon receiving the sensor data, the processor of the embedded system

performs some pre-defined operations with the help of the firmware program embedded in

the system & sends some signals to the actuators connected to the output port of the

embedded system.

For an embedded system, it is the responsibility of designer to impart intelligence to the

system. So, an embedded system without control algorithm in memory cannot be capable

of making any decision depending on the situations as well as changes in the real world.

The Memory of the embedded when is responsible for storing the control algorithm as

software program code. In most of embedded systems, this memory is a kind of Read Only

Memory (ROM) and it is not available for the user for modifications which means that the

memory protected from unwanted user interaction. The common types of memories used

in embedded systems FROM, UV-EPROM, EE-PROM & FLASH memory. Depending on the

application, the memory may vary from a few bytes to megabytes.

Sometimes the system requires temporary memory while performing arithmetic

operations and this type of memory known as "Working Memory". Random Access

Memory (RAM) used in most the systems as the working memory. Various types of RAM

like SRAM, DRAM and NVRAM are used for this purpose. The size of the RAM also varies

from few bytes to kilobytes or megabytes depending on the application.

COMPONENTS OF EMBEDDED SYSTEM HARDWARE

An embedded system has three components:

1. Hardware.

2. Application software. This may perform concurrently the series of tasks or multiple
tasks.

3. Real Time Operating system (RTOS) that supervises the application software and

Embedded systems NCERC,PAMPADY

provide mechanism to let the processor run a process as per scheduling by following a plan

to control the latencies. RTOS defines the way the system works. It sets the rules during the

execution of application program. A small scale embedded system may not have RTOS.

Hardware.

Processor - A Processor is the heart of the Embedded System. The main criteria for the

processor are the processing power needed to perform the tasks within the system.

Processors can be of the following categories:

➢ General Purpose Processor (GPP)

➢ Microprocessor

➢ Microcontroller

➢ Embedded Processor

➢ Digital Signal Processor / Media Processor

➢ Application Specific System Processor (ASSP)

➢ Application Specific Instruction Processors (ASIPs)

Power Source

Most embedded systems have a power supply of their own. The supply has

specific operation range of voltages in one of the following 4 power ranges: 5.0 V + 0.25 V;

3.3 V + 0.3 V; 2.0 V + 0.2 V and 1.5 V + 0.2 V. Certain systems do not have a power source

of their own, so they are connect to external power supply.

For e.g. A Graphic accelerator do not have its own power supply.

Embedded systems NCERC,PAMPADY

Clock Oscillator Circuit (Clocking Units)

The clock is an another basic unit of a system. A processor needs a clock oscillator

circuit as the clock controls the time for executing an instruction. The clock controls the

various clocking requirements of the CPU, system clocks and the CPU machine cycles. For

processing units, a highly stable oscillator is required as the clock signal provides the

synchronizing of all other system units.

System Timers & Real-Time Clocks (RTC)

To schedule the various system tasks and for real-time programming, a system clock or an

RTC is needed. These clocks drives the timers for various timing & counting needs in a

system. System clock & RTC are also used to obtain delays and time-outs. A timer circuit is

usually configured as the system-clock.

Another timer circuit is suitably configured as the real-time clock (RTC) for periodic

saving of time & date in the system. Microcontrollers has built-in internal timer circuits for

counting & timing devices

Timer - Embedded systems often require mechanisms for counting the occurrence of

events and for

performing tasks at regular intervals.

➢ Embedded processors are often equipped with hardware support for this functionality.

➢ Timer is a device, which counts the input at regular interval using clock pulses at its input.

➢ The count increment on each pulse and store in a register, called count register.

➢ Timer is used for generating delay and for generating waveforms with specific delay.

Serial Port - A serial port is a serial communication interface through which information

transfers in

or out one bit at a time.

➢ Serial data transmission is much more common in new communication protocols

due to a reduction in the I/O pin count, hence a reduction in cost.

➢ Common serial protocols include UART, SPI, SCI and I2C etc.

➢ In most of the embedded systems at least two serial ports are provided.

Parallel Port - A parallel port is a type of interface found on computers or embedded

systems for connecting peripherals.

The name refers to the way the data is sent; parallel ports send multiple bits of data at once.

Parallel ports require multiple data lines in their cables and port connectors, and tend to be

larger than contemporary serial ports.

Embedded systems NCERC,PAMPADY

Interrupt Controller - An interrupt is a signal to the processor emitted by hardware or

software indicating an event that needs immediate attention.

Interrupts allow an embedded system to respond to multiple real world events in rapid time.

By managing the interaction with external systems through effective use of interrupts can

dramatically improve system efficiency and the use of processing resources.

In an embedded system there are usually multiple interrupt sources.

These interrupt sources share a single pin. The sharing is controlled by a piece of

hardware called an interrupt controller that allows individual interrupts to be either enabled

or disabled.

System Application Specific Circuit - These are the dedicated circuits for the

implementation of the application of particular system. This may varies from one system to

other.

Reset Circuit, Power-up Reset & Watchdog-Timer Reset

Reset can be activated by an external reset circuit that activates on power-up

(switching- on) the system. The reset circuit is a simple circuit (such as an RC circuit)

whose output connects to the reset pin of the processor. To reset a processor, the reset

circuit should activate for a fixed period of a few clock cycles & then deactivate thereby

making the processor’s reset pin active and then deactivate. Reset can also be activated by

any one of the following:

(i) Software instruction (e.g. RST instruction)

(ii) Reset after a time-out by a programmed timer known as a watchdog timer

The watchdog timer is a timing device that resets the system after a predefined time-out of

a few clock cycles. A watchdog timer reset is very essential in embedded systems because it

helps in rescuing the system if the system program gets stuck due to a fault. On restart, the

system can function normally. Most microcontrollers have on-chip watchdog timers.

Reset means that the processor begins the processing of instructions from a

starting address. That address is one that is set by default in a processor on a power-up.

From that memory address (start-up addresses), program-instructions are fetched

following the reset of the processor. In certain processors, there are two start-up

addresses. One is for the power-up reset and the processor fetches the program bytes from

this address upon power-up. The other one is for after the execution of a “reset‟ instruction

or after a timeout such as a watchdog timer based reset. Here, processor fetches the bytes

program bytes from this second address on executing the reset instruction or on the

watchdog timer based reset.

Memory

An embedded system uses different types of memory modules for a wide range of

Embedded systems NCERC,PAMPADY

tasks such as storage of software code and instructions for hardware

a. ROM or EPROM or Flash

1. Stores 'Application' program from where the processor fetches the instruction codes

2. Stores codes for system booting, initializing, Initial input data and Strings.

3. Stores Codes for RTOS.

4. Stores Pointers (addresses) of various service routines.

b. Internal, External and Buffer RAM - The function of these memory are

1. Storing the variables during program run,

2. Storing the stacks,

3. Storing input or output buffers for example, for speech or image .

c. EEPROM or Flash - Storing non-volatile results of processing.

d. Caches memory – Functions Assigned to the Caches

1. Storing copies of the instructions, data and branch-transfer instructions in

advance from external memories and

2. Storing temporarily the results in write back caches during fast processing.

EMBEDDED PROCESSORS

1. General Purpose Processor (GPP)

A GPP is a general-purpose processor with instruction set designed not specific to

the applications. General purpose processors (GPP) are designed for general purpose

computers such as PCs or workstations. The computation speed of a GPP is the main

concern and the cost of the GPP is usually much higher than DSPs and microcontrollers. All

techniques that can increase CPU speed have been applied to GPPs. For example, GPPs

usually include on-chip cache and on-chip DMAs. Commonly used math operations are

also supported by the on-chip

Embedded systems NCERC,PAMPADY

hardware. GPPs are not designed for fast real-time applications. Scalar structure is

common in GPPs but rarely seen in DSPs and microcontrollers.

E.g. Microprocessor; Embedded Processor.

2. Application-Specific Integrated Circuit (ASIC)

An application-specific integrated circuit is an integrated circuit (IC) customized for a

particular use, rather than intended for general-purpose use. For example, a chip designed

to run in a digital voice recorder is an ASIC. Modern ASICs often include entire

microprocessors, memory blocks including ROM, RAM, EEPROM, flash memory and other

large building blocks. Such an ASIC is often termed a SoC (system-on-chip). Designers of

digital ASICs often use a hardware description language (HDL), such as Verilog or VHDL, to

describe the functionality of ASICs.

3. Application Specific Instruction-Set Processor (ASIP)

An application-specific instruction set processor (ASIP) is a component used in system-

on-a- chip design. The instruction set of an ASIP is tailored to benefit a specific application.

This specialization of the core provides a tradeoff between the flexibility of a general

purpose CPU and the performance of an ASIC. An ASIP is a processor with an instruction

set designed for specific applications.

E.g. Microcontroller; Embedded microcontroller; Digital Signal Processor (DSP) and

media processor; Network processor; IO processor etc.

4. Multi-core processors or multi-processor:

A multi-core processor is an integrated circuit (IC) to which two or more processors

have been attached for enhanced performance, reduced power consumption, and more

efficient simultaneous processing of multiple tasks (see parallel processing). A dual core

set-up is somewhat comparable to having multiple, separate processors installed in the

same computer, but because the two processors are actually plugged into the same socket,

the connection between them is faster. In a dual core processor in practice, performance

gains are said to be about fifty percent: a dual core processor is likely to be about one-and-

a-half times as powerful as a single core processor

The following are important considerations when selecting a processor:

(1) Instruction set

(2) Maximum bits in an operand (8 or 16 or 32)

(3) Clock frequency in MHz

(4) Processing speed in MIPS (Million Instructions Per Second)

(5) Processor ability to solve complex algorithms

Embedded systems NCERC,PAMPADY

5. MICROPROCESSOR

A microprocessor is a single VLSI chip that has a CPU. It may also have some other

units (e.g., caches, floating point processing arithmetic unit, pipelining units etc.) that are

additionally present for the faster processing of instructions. The CPU is a unit that fetches

& processes a set of instructions. The CPU instruction set includes instructions for data

transfer operations, ALU operations, stack operations, IO operations, program control &

sequencing operations. The important microprocessors used in the embedded systems are

ARM, 68HCxxx, 80x86 and SPARC family of microprocessors. A microprocessor is used as

general-purpose processor when large embedded software has to be located in the external

memory chips.

6. MICROCONTROLLER (MICRO-COMPUTER)

A microcontroller is a single-chip VLSI unit having limited computational

capabilities, possesses enhanced IO and a number of on-chip functional units. A

microcontroller has processor, memory & several other hardware units (peripherals) in it;

these form the microcomputer part of the embedded system. Choosing a microcontroller as

a processing unit depends upon the application-specific features in it. Microcontrollers are

particularly suited for use in embedded systems for real-time control applications with on-

chip memory & peripherals/devices. A microcontroller is used when a small embedded

software has to be located in the internal memory and when on-chip functional units such

as various types of peripherals such as ports, timer, ADC, PWM etc. are required.

7. SINGLE PURPOSE PROCESSORS

(1) Coprocessor (for e.g., math coprocessor, floating point processor etc.)

(2) Graphics processor: - An image consists of a no. of pixels.

- A separate graphics processor is required for applications such as gaming, display

from graphics memory and rotate an image or its segments.

(3) Pixel coprocessor: - A pixel coprocessor is required in digital cameras for

operation on images such as rotate right, rotate-left, rotate- up, rotate-down, shift to next,

shift to previous.

(4) Encryption engine: - A suitable algorithm runs in this processor to encrypt data for

secure transmission.

(5) Decryption engine: - A suitable algorithm runs in this processor to decrypt the

encrypted data at receiver’s end.

(6) A discrete cosine transformation (DCT) and inverse transformation (DCIT)

processor is required in speech and video processing.

(7) Protocol stack processor: - A protocol stack required before an application data is

sent to a network.

Embedded systems NCERC,PAMPADY

- At the receiver’s end, the protocol stack is received and application data is accepted

accordingly. (E.g. for Wi-Fi protocol)

- MP3 decompression is done before retrieving or playing files.

(8) Network processor:

- A network processor’s functions are to establish a connection, finish, send & receive

acknowledgements, send and receive retransmission requests and check and correct

received data frame errors.

- The network processor’s functions include all protocol related processing functions.

(9) Accelerator

- For e.g., Java codes accelerator is a coprocessor that accelerates computations by

taking actions that are in Java programs.

(10) Controller

- E.g., DMA Controller (Direct Memory Access), bus control, peripheral management

(11) CODEC (Coder & Decoder)

- A CODEC is a processor circuit encodes input bits or decodes the encoded information

into a complete set of bits or original signals. The CODEC functions as a compression &

decompression unit signals such voice, speech, image or video signals

JPEG CODEC:- This is a processor for jpg compression and decompression.

MPEG CODEC:- MPEG3 CODEC is a processor for mp3 compression of audio/video data

streams for storing or transmitting

EMBEDDED SOFTWARE IN A SYSTEM

The software program code (instruction codes) is the brain of an embedded system.

An embedded system processor executes software that is specific to a given application.

The program codes are placed in the ROM (or flash memory or PROM) for the execution of

tasks when the system runs. This final “machine implementable software” is called the

“ROM image” that is being embedded into the ROM similar to an “image” in an “image

frame”. Each program code is in bytes format & these bytes are saved at each address of the

system memory (ROM). The code bytes are required at each ROM address to execute the

tasks.

So, a machine implementable software file (ROM image) is similar to a table having

many rows and only two columns; 1st column for memory address & 2nd column for

corresponding code byte in a memory address. By changing ROM image, the same

hardware platform will work differently.

1) MACHINE-CODE BASED CODING

Embedded systems NCERC,PAMPADY

In machine-code based coding, the programmer defines the machine code

bytes corresponding each memory addresses for a program.

- Machine-code based coding is done only in specific situations because it is time

consuming and the programmer must have to understand the processor

instructions set and their corresponding machine codes

2) CODING IN ASSEMBLY LANGUAGE

Small programs can be coded in assembly language after understanding the

processor & its instruction set. “Assembler” is the software used for converting the codes

written in assembly language (similar to a compiler for high level language like C, Java etc) .

Assembly language coding is extremely useful for configuring devices like ports, ADC, DAC

etc. But, Assembly language based programming is also very time consuming while making

larger programs/ codes. Full coding in assembly may be done only for a few simple, small-

scale embedded systems.

Figure: shows the process of converting an assembly language program into machine

implementable software file and then finally obtaining a ROM image file.

Assembler, Linker, Locator & Loader are the software required for the whole process.

(a) First step is called “Assembling” in which assembler software translates the

assembly software into the machine codes.

(b) Next step is called linking; a linker links these codes (if necessary) with the other codes

taken from the library.

(c) For a final program, a no. of other codes are to be linked together.

For eg., there are the standard codes for delay function (eg. delay() in Arduino). If ‘delay()’

is included in the program, the program codes for the delay() must link with the final

assembled code. The linked file in binary is known as executable file (a file with ‘.EXE’

Data Bytes
Embedded system

ROM memory

From library

needed

Machine

Codes

Bytes for

linked

programs

Device (ROM)

Programmer

(Burner)

Machine Codes ready

for locating at various

addressed

Machine

specific

assembly

language

program

1

Assembler

Machine Codes

for the program

at various

addressed
 3

2

Linker

Loader

.

R
e

 a
llo

ca
ti

n
g

ad
d

re
ss

Embedded systems NCERC,PAMPADY

extension).

(d) In embedded systems, the next step after linking is the use of a “Locator” software

which locates the already fixed ROM addresses. For eg., in a memory-mapped IO scheme; IO

port addresses, IO devices addresses etc. are permanently assigned to some memory

locations.

- The locator software “re-allocates” the memory addresses in a linked file & creates a file

with permanent memory allocation for each of the code bytes in a standard format

- Eg for such a standard file format is “Intel .HEX file format”.

(e) In the next step, the “Loader” software performs the task of placing/ loading the code

bytes as an “image to be placed in ROM” by finding the exact available ROM memory

addresses

- For many processors, the available memory addresses may not start from “0000H”.

- The “loader” finds the appropriate “start address” for the final program codes.

(f) Lastly “Programmer Device/ Equipment” takes as input the ROM image file.

For eg. (in .HEX format) & “writes” the image as byte by byte into the memory. So the

process of placing the codes into ROM or flash memory is also called “Burning” into the

ROM/flash.

3) CODING IN HIGH LEVEL LANGUAGE

For large software programs development, high-level language like C, C++, visual C++,

Java etc. are used. ‘C‟ is usually the preferred language. The programmer needs to

understand only the hardware organization of the whole embedded system when coding in

high level language

Figure shows the process of converting a C program into the ROM image file.

-First, the compiler software generates the object codes (file with .OBJ extension). The

Embedded systems NCERC,PAMPADY

compiler assembles the codes according to the processor instruction set

- Before linking, the compiler may use a “Code-Optimizer” that optimizes the codes by

removing the “redundant/ unnecessary variables or steps” written in the program

- The linker links the object codes with other standard program codes in the program

(similar to the linking step in assembling process). For eg, the linker includes the program

codes for the pre- defined functions like printf(), delay() etc

- Codes for some standard devices & the device control management also link at this

stage; For eg., a printer device management & its driver codes

- After linking, the other steps for creating a file for ROM image are same as that discussed

in previous section of assembling process (Locating, Loading & Burning).

4) DEVICE DRIVERS

- A device driver is a software written in a high level language that controls

functions/actions of a device such as opening the device, “connecting the device to other

devices”, “reading the device”, “writing to the device” & “closing the device”

- Each of the device driver software can access a parallel port, serial port, keyboard, mice,

disk, network, display, file etc. at specific addresses.

- A device driver software controls 3 functions,

(i) Initializing a device by placing appropriate bits at the control register of the device.

(ii) Calling an Interrupt Service Routine upon setting up a status flag in the status register

of the device for running the ISR.

(iii) Re-setting the status flag after an interrupt service is completed Device Manager
Software

- A device manager software provide programs for

• Detecting the presence of devices connected to the system (both virtual & physical)

• Listing out the available devices connected to the system

• Initializing the devices testing the devices

• Allocates “Port Addresses” for the various physical & virtual devices (Eg. COM2, COM3

etc for virtual serial ports in Windows)

ARM PROCESSOR

Advanced RISC machine (ARM) is the first reduced instruction set computer (RISC)

processor for commercial use, which is currently being developed by ARM Holdings.

RISC:- A Reduced Instruction Set Computer (RISC) is a microprocessor that has been

designed to perform a small set of instructions, with the aim of increasing the overall speed

of the processor. The RISC concept first originated in the early 1970's when an IBM

Embedded systems NCERC,PAMPADY

research team proved that 20% of instruction did 80% of the work. The RISC architecture

follows the philosophy that one instruction should be performed every clock cycle.

Comparison between CISC and RISC

CISC RISC

Larger set of instructions. Easy to program Smaller set of Instructions. Difficult to

program.

Simpler design of compiler,
considering

larger set of instructions.

Complex design of compiler.

Many addressing modes causing
complex

instruction formats.

Few addressing modes, fix instruction
format.

Instruction length is variable. Instruction length varies.

Higher clock cycles per second. Low clock cycle per second.

Emphasis is on hardware. Emphasis is on software.

Control unit implements large instruction
set

using micro-program unit.

Each instruction is to be executed by
hardware.

Slower execution, as instructions are to
be

read from memory and decoded by the

decoder unit.

Faster execution, as each instruction is to be

executed by hardware

Pipelining is not possible. Pipelining of instructions is possible,

considering single clock cycle.

Mainly used in normal pc‘s, workstations
&

servers.

Mainly used for real time applications.

ARM9

• The ARM9TDMI is a member of the ARM family of general-purpose microprocessors.

• The ARM9TDMI is targeted at embedded control applications where high

performance, low die size and low power are all important.

• The ARM9TDMI supports both the 32-bit ARM and 16-bit Thumb instruction sets,

allowing the user to trade off between high performance and high code density.

• ARM and Thumb are two different instruction sets supported by ARM cores with a

“T” in their name. Thumb mode allows for code to be smaller, and can potentially be

faster if the target has slow memory

• The ARM9TDMI supports the ARM debug architecture and includes logic to assist in

both hardware and software debug.

• The ARM9TDMI supports both bidirectional and unidirectional connection to

external memory systems.

• The ARM9TDMI also includes support for coprocessors.

Embedded systems NCERC,PAMPADY

• The ARM9TDMI processor core is implemented using a five-stage pipeline

consisting of fetch, decode, execute, memory and write stages.

• The device has a Harvard architecture, and the simple bus interface eases

connection to either a cached or SRAM-based memory system.

Advanced RISC Machine (ARM) Processor Fundamentals

Like all RISC processors, the ARM processor also uses an architecture known as the “Load-

Store Architecture” which means ARM has only two instructions for transferring data in &

out of the processor & its memory.

The two instructions are

(i) ‘LOAD’ Instruction:- Copy data from Memory to CPU registers in ARM core

(ii) ‘STORE’ Instruction :- Copy data from CPU registers of ARM core to Memory.

• In ARM, there are no other instructions that directly manipulate data in the memory.

• Fig. shows a Von-Neumann implementation of ARM core, in which the instructions

& the data share the same bus (A Harvard implementation of ARM core has two

separate buses of instructions & data)

• So, Data/ Instructions enters the processor core through the ‘Data Bus’ . The

‘Instruction Decoder’ translates instructions before they are executed.

• Data items are placed in the ‘Register File’, which is a CPU register bank made up of

16 general purpose registers (r0 to r15) in which each register has a size of 32-bit.

• The ARM core is a 32-bit processor in which the general purpose registers (r0 - r15)

of ‘Register_File’ can hold only 32-bit data values. The ‘Sign Extend Hardware’

Embedded systems NCERC,PAMPADY

converts the signed 8 or 16-bit data inputs to 32-bit data values while they read

from memory

• ARM instructions have two Source Registers : ‘Rn’ & ‘Rm’.One Destination Register

:‘Rd’(also called as Result Register).

• The source operands are read from the register file using internal buses ‘A_bus’ &

‘B_bus’ respectively.

• The ALU or MAC(Multiply accumulator) unit of ARM takes the source data in the

registers ‘Rn’ & ‘Rm’ through A bus & B bus for computing the result.

• After passing through the functional units (ALU or MAC), the result in ‘Rd’ register is

written back to the register file through the ‘Result Bus’.

• Here, the data in one of the source register ‘Rm’ can also be shifted in a

‘Barrel_Shifter’ unit before it enters the ALU . Using the combined operation of the

Barrel Shifter & ALU, the ARM can generate a wide range of expressions &

addresses.

• In ARM, the ALU also generates the memory addresses that is to be placed in the

address register for broadcasting the address through the ‘Address Bus’.

• The ‘Incrementer’ is used to update the address register for a data transfer

operation from sequential memory locations.

ARM 9 ARCHITECTURE

The main parts of the ARM processor are:

Embedded systems NCERC,PAMPADY

1. Register file: The processor has a total of 37 registers made up of 31 general 32 bit

registers and 6 status registers

2. Booth Multiplier

3. Barrel shifter

4. Arithmetic Logic Unit (ALU)

5. Control Unit.

Registers

The processor has a total of 37 registers made up of 31 general 32 bit registers and

6 status registers. At any one time 16 general registers (R0 to R15) and one or two status

registers are visible to the programmer. The visible registers depend on the processor

mode. In all modes 16 registers, R0 to R15, are directly accessible. All registers except R15

are general purpose and may be used to hold data or address values. Register R15 holds the

Program Counter (PC). A seventeenth register (the CPSR - Current Program Status

Register) is also accessible. It contains condition code flags and the current mode bits and

may be thought of as an extension to the PC. R14 is used as the subroutine link register and

receives a copy of R15 when a Branch and Link instruction is executed.

Program status register:- It contains the processor flags (Z, S, V and C). The modes bits

also exist in the program status register in addition to the interrupt and fast interrupt disable

bits

Some special registers: Some registers are used like the instruction register, memory

data read and write register and memory address register

Multiplexers: Many multiplexers are used to control the operation of the processor buses

Arithmetic Logic Unit (ALU) :- The ALU has two 32-bits inputs. The first comes from the

register file while the other comes from the shifter. ALU outputs modify the status register

flags.

Booth multiplier:- The multiplier has three 32-bit inputs. All the inputs come from the

register file. The multiplier output is only the 32 least significant bits of the product.

Barrel shifter:- A barrel shifter is a digital circuit that can shift a data word by a specified

number of bits without the use of any sequential logic, only pure combinational logic. The

barrel shifter has a 32-bit input to be shifted. This input is coming from the register file or it

could be immediate data. The shifter has other control inputs coming from instruction

register. Shift field in the instruction controls the operation of the barrel shifter. This field

indicates the type of shift to be performed (logical left or right, arithmetic right or rotate

right). The amount by which the register should be shifted is contained in an immediate

field in the instruction or it could be the lower 6 bits of a register in the register file.

Control Unit :- For any microprocessor, control unit is the heart of the system. It is

responsible for the system operation and so the control unit design is the most important

Embedded systems NCERC,PAMPADY

part in the hole design. Control unit is usually a pure combinational circuit. The processor

timing is also included in the control unit.

Pipeline implementation

The ARM9TDMI implementation uses a five-stage pipeline design. These five stages are:

1. Instruction fetch (F):- The instruction is fetched from memory and placed in the

instruction pipeline

2. Instruction decode (D):- The instruction is decoded and register operands read from

the register files. There are 3 operand read ports in the register file so most ARM

instructions can source all their operands in one cycle

3. Execute (E):- An operand is shifted and the ALU result generated. If the instruction is a

load or store, the memory address is computed in the ALU

4. Data memory access (M):- Data memory is accessed if required. Otherwise the ALU

result is simply buffered for one cycle

5. Register write (W):- The result generated by the instruction are written back to the

register file, including any data loaded from memory

ARM Bus Organization -AMBA

Embedded systems NCERC,PAMPADY

Figure: ARM Bus structure

ARM has created a separate bus specification for single-chip systems. The

AMBA[Advanced Microcontroller Bus Architecture] bus [ARM99A] supports CPUs,

memories, and peripherals integrated in a system-on-silicon.

The AMBA specification includes two buses.

The AMBA high-performance bus (AHB) is optimized for high-speed transfers and is

directly connected to the CPU. It supports several high performance features: pipelining,

burst transfers.

Burst mode is a temporary high-speed data transmission mode used to facilitate

sequential data transfer at maximum throughput. Burst mode data transfer rate (DTR)

speeds can be approximately two to five times faster than normal transmission protocols.,

Split transactions:- the Split and Retry responses are used by slaves which require a

large number of cycles to complete a transfer. These responses allow a data phase transfer

to appear completed to avoid sharing the bus, but at the same time indicate that the

transfer should be re- attempted when the master is next granted the bus.

The difference between them is that a SPLIT response tells the Arbiter to give priority

to all other masters until the SPLIT transfer can be completed (effectively ignoring all

further requests from this master until the SPLIT slave indicates it can complete the SPLIT

transfer), whereas the RETRY response only tells the Arbiter to give priority to higher

priority masters.

A SPLIT response is more complicated to implement than a RETRY, but has the

advantage that it allows the maximum efficiency to be made of the bus bandwidth.

Multiple bus masters.

The AMBA bus specification supports multiple bus masters on the high performance

ASB. A simple two wire request and grant mechanism is implemented between the arbiter

and each bus master. The arbiter ensures that only one bus master is active on the bus and

also ensures that when no masters are requesting the bus, a default master is granted.

The specification also supports a shared lock signal. This allows bus masters to indicate

Embedded systems NCERC,PAMPADY

that the current transfer is indivisible from the following transfer and prevents other bus

masters from gaining access to the bus until the locked transfers have completed. A bridge

can be used to connect the AHB[AMBA High-performance Bus] that is a single clock-edge

protocol, to an AMBA peripherals bus(APB). This bus is designed to be simple and easy to

implement; it also consumes relatively little power. The AHB assumes that all peripherals

act as slaves, simplifying the logic required in both the peripherals and the bus controller.

It also does not perform pipelined operations, which simplifies the bus logic.

Embedded Product Development Life Cycle (EDLC)

EDLC is Embedded Product Development Life Cycle:- It is an Analysis, Design,

Implementation based problem solving approach for embedded systems development.

Different Phases of EDLC: The following figure depicts the different phases in EDLC:

Need :- The need may come from an individual or from the public or from a company.

Conceptualization :- Defines the scope of concept, performs cost benefit analysis and

feasibility study and prepare project management and risk management plans.

Analysis:- The product is defined in detail with respect to the inputs, processes, outputs,

and interfaces at a functional level.

Design :- The design phase identifies application environment and creates an overall

architecture for the product.

Development and Testing :- Development phase transforms the design into a realizable

product.

Deployment :- Deployment is the process of launching the first fully functional model of

the product in the market.

Support :- The support phase deals with the operational and maintenance of the product in

the production environment.

Upgrades :- Deals with the development of upgrades (new versions) for the product which

is already present in the market.

Embedded systems NCERC,PAMPADY

Retirement/Disposal :- The retirement/disposal of the product is a gradual process. This

phase is the final phase in a product development life cycle where the product is declared

as discontinued from the market.

Waterfall Model

· Linear or waterfall model is one of the EDLC models which adopted in most of the olden

systems.

In this approach each phase of EDLC (Embedded Development Product Lifecycle) is

executed in sequence. It establishes analysis and design with highly structured

development phases. The execution flow is unidirectional. The output of one phase

serves as the input of the next phase. All activities involved in each phase are well

planned so that what should be done in the next phase and how it can be done. The

feedback of each phase is available only after they are executed. It implements extensive

review systems to ensure the process flow is going in the right direction. One significant

feature of this model is that even if you identify bugs in the current design the

development process proceeds with the design. The fixes for the bug are postponed till

the support phase.

Advantages

Product development is rich in terms of: · Documentation, Easy project management,

Good control over cost & Schedule

Drawbacks

Embedded systems NCERC,PAMPADY

· It assumes all the analysis can be done without doing any design or implementation

· The risk analysis is performed only once.

· The working product is available only at the end of the development phase

· Bug fixes and correction are performed only at the maintenance / support phase of

the life cycle.

Challenges in Embedded Systems

1. Amount and type of hardware needed. Optimizing various hardware elements for a

particular design.

2. Taking into account the design metrics

Design metrics examples –power dissipation, physical size, number of gates and

engineering, prototype development and manufacturing costs.

3. Optimizing the Power Dissipation:- Clock Rate Reduction and Operating Voltage Reduction

4. Disable use of certain structural units of the processor to reduce power dissipation the

processor to reduce power dissipation. Control of power requirement, for example, by

screen auto‐brightness control

5. Process Deadlines:- Meeting the deadline of all processes in the system while keeping

the memory, power dissipation, processor clock rate and cost at minimum is a challenge.

6. Flexibility and Upgradeability:- Ability to offer the different versions of a product for

marketing and offering the product in advanced versions later on.

7. Reliability:- Designing reliable product by appropriate design and thorough testing,

verification and validation is a challenge.

8. Testing, Verification and Validation:- Testing – to find errors and to validate that the

implemented software is as per the specifications and requirements to get reliable product.

